М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Andy01
Andy01
14.07.2021 23:57 •  Алгебра

||x+1|-|x-3||=|x| с подробным объяснением,

👇
Ответ:
Anytohka0cosmos
Anytohka0cosmos
14.07.2021
||x+1|-|x-3||=|x|

Разбиваем на совокупность уравнений
|x+1|-|x-3|=x \\ |x+1|-|x-3|=-x

Решаем каждое из них:
1)
Нули подмодульных выражений:
x+1=0 \\ x=-1 \\ \\ x-3=0 \\ x=3

Значит решения рассматриваем на интервалах:
x \in (-\infty ;-1) \\ \\ -x-1+x-3=x \\ x=-4 \\ \\ x \in [-1;3) \\ \\ x+1+x-3=x \\ x=2 \\ \\ x \in [3; +\infty ) \\ \\ x+1-x+3=x \\ x=4

2)
Аналогично, нули -1 и 3.

x \in (-\infty; -1) \\ \\ -x-1+x-3=-x \\ x=4 \notin ODZ \\ \\ x \in [-1; 3) \\ \\ x+1+x-3=-x \\ x= \dfrac{2}{3} \\ \\ x \in [ 3; +\infty ) \\ \\ x+1-x+3=-x \\ x=-4 \notin ODZ

ответ: -4; \dfrac{2}{3}; 2; 4
4,7(96 оценок)
Ответ:
Айдан88
Айдан88
14.07.2021
Избавляемся от внешнего модуля:
возведем обе части в квадрат:
(x+1)^2-2|x+1|*|x-3|+(x-3)^2=x^2
\\x^2+2x+1-2|x+1|*|x-3|+x^2-6x+9-x^2=0
\\x^2-4x+10-2|x+1|*|x-3|=0
теперь раскрываем внутренние модули:
1) \left \{ {{x+1 \geq 0} \atop {x-3 \geq 0}} \right. 
\\ \left \{ {{x \geq -1} \atop {x \geq 3}} \right. 
\\x \in [3;+\infty)
\\x^2-4x+10-2(x+1)(x-3)=0
\\x^2-4x+10-2x^2+4x+6=0
\\-x^2+16=0
\\x^2=16
\\x_1=4 \in [3;+\infty)
\\x_2=-4 \notin [3;+\infty)
\\2) \left \{ {{x+1 \leq 0} \atop {x-3 \geq 0}} \right. 
\\ \left \{ {{x \leq -1} \atop {x \geq 3}} \right. 

x \in\emptyset \\3) \left \{ {{x+1 \geq 0} \atop {x-3 \leq 0}} \right. \\ \left \{ {{x \geq -1} \atop {x \leq 3}} \right. \\ x \in [-1;3] \\x^2-4x+10+2(x+1)(x-3)=0 \\x^2-4x+10+2x^2-4x-6=0 \\3x^2-8x^2+4=0 \\D=64-48=16=4^2 \\x_1= \frac{8-4}{6} = \frac{2}{3} \in [-1;3] \\x_2= \frac{8+4}{6} =2\in [-1;3] \\4)\left \{ {{x+1 \leq 0} \atop {x-3 \leq 0}} \right. \\ \left \{ {{x \leq -1} \atop {x \leq 3}} \right. \\x \in (-\infty;-1] \\x^2-4x+10-2(x+1)(x-3)=0 \\x^2-4x+10-2x^2+4x+6=0 \\-x^2+16=0 \\x^2=16
x_1=4 \notin (-\infty;-1]
\\x_2=-4 \in (-\infty;-1]
ответ: \pm4;\ \frac{2}{3} ;\ 2
4,6(34 оценок)
Открыть все ответы
Ответ:
дядяррррр
дядяррррр
14.07.2021
Сторона квадрата равна корень из его площади ( по формуле ) , значит его стороны по 4 см . Если расположить квадраты вдоль прямоугольника , чтобы они не касались друг друга , то длинна прямоугольника должна быть равна = 4+4+4 = 12 , а у нас длинна прямоугольника равна 10 . Если расположить квадраты в высоту ( по ширине прямоугольника ) , то ширина должна быть равна тоже 12 см ( чтобы квадраты не накладывались друг на друга ) , а у нас высота ( ширина ) = 4 см . Значит хотя бы 2 квадрата накладываются друг на друга :)
4,6(43 оценок)
Ответ:
вовчик83
вовчик83
14.07.2021
Дано:
y = f(x), \\ f(x) = (x-8)^2 - (x+8)^2
Доказать, что y=f(x) — прямая пропорциональность.
----------
От нас требуется доказать, что y = f(x) — прямая пропорциональность, то есть доказать, что в выражении (x-8)^2 - (x+8)^2x находится в первой степени (не x^{2}, не x^{3}, не \frac{1}{x} и не \sqrt{x}, а просто x).
Рассмотрим данное выражение (x-8)^2 - (x+8)^2. Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид a^2 - b^2, где a^2 = (x-8)^2, и b^2 = (x+8)^2. Формула «разность квадратов» раскрывается так: a^2 - b^2 = (a-b)(a+b).
Раскроем наше выражение по формуле:
(x-8)^2-(x+8)^2 = ((x-8) - (x + 8))*((x-8)+(x+8))
Упростим:
= (x-x-8-8)*(x+x-8+8)=-16*2x=-32x.
Итак, получается, что f(x) = -32x, x находится в первой степени, а значит зависимость y = f(x) — есть прямая пропорциональность. Доказано.
4,6(20 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ