M(x) = x^4 + 2x^3 + ax^2 + bx + 72
N(x) = x^2 - 5x + 6 = (x - 2)(x - 3)
если один многочлен делится без остатка на другой, то корни одного многочлена, являются корнями делимого многочлена
корни второго 2 и 3
значит и корни первого 2 и 3
2^4 + 2*2^3 + a*2^2 + b*2 + 72 = 0
16 + 16 + 4a + 2b + 72 = 0
2a + b = -52
3^4 + 2*3^3 + a*3^2 + b*3 + 72 = 0
81 + 54 + 9a + 3b + 72 = 0
3a + b = - 69
3a + b - 2a - b = -69 + 52
a = -17
2*(-17) + b = -52
b = -18
ответ a=-17 b=-18
ну можно в столбик разделить, зная что если первый многочлен x^2 -5x + 7 то второй будет (смотрим на первый и свободный члены) типа x^2 + cx + 7 и найти эту c
график ф-ии будет задан формулой y=(x+4)(x^2-4x+4)-22
y = x^3-4x^2+4x+4x^2-16x+16-22
y = x^3 - 12x - 6
несомненно, что это кубическая парабола, найдем ее точки перегиба
y' = 3x^2 - 12 = 0 решив это уравнение получаем, что точки перегиба в точках x=-2 и х=2
найдем значения ф-ии в точках перегиба и на концах отрезка
x=-4 y=-22
x=-2 y=10
x=2 y=-22
x=3 y=-15
максимальное значение ф-ии в точке х=-2 равное 10
ответ 10
но проще всего просто написать программку, которая перебирает значение с шагом в 1/1000 по всему заданному приоду и выводит максимум и минимум