1 вариант
№1
а) (a-5)²=a²-10a+25 б) (6a+b)²=36a²+12ab+b²
в) (4a-1)(4a+1)=16a²-1 в) (a+2b)³=a³+6a²b+6ab²+8b³
№2
(a-6)²-(36+5a)=a²-12a+36-36-5a=a²-17a
№3
а) 3x²+9xy=3x(x+3y) б) 10x⁵-5x=5x(2x⁴-1)
№4
а) (a+3)-2(a+3)=(a+3)(1-2)=-1(a+3) б) ax-ay+5x-5y=a(x-y)+5(x-y)=(x-y)(a+5)
в) a²+4ab+4b²=(a+2b)²=(a+2b)(a+2b)
№5
а) (y²-2a)(2a+y²)=y⁴-4a²
б) (3x²+x)²=9x⁴+6x³+x²
№6
а) 4x²y²-9a⁴=(2xy+3a²)(2xy-3a²) б) 25a²-(a+3)²=(5a-a-3)(5a+a+3)=(4a-3)(6a+3)
в) 27m³+n³=(3m+n)(9m²-3mn+n²)
№7
а) 9y²-25=0
9y²=25
y²=25/9
y₁,₂=±5/3=±1 2/3
б) (x+2)(x-2)-(x-3)²=-1
x²-4-x²+6x-9=-1
6x=12
x=2
№8
а) 35²-25²=(35-25)(35+25)=10*60=600
б) 299*301=299(300+1)=89700+299=8999
Объяснение:
1) Упростить
а)(х-3)(х-7)-2х(3х-5)=
=х²-7х-3х+21-6х²+10х=
= -5х²-10х+21+10х=
= -5х²+21
б)4а(а-2)-(а-4)²=
=4а(а-2)-(а²-8а+16)=
=4а²-8а-а²+8а-16=
=3а²-16
в)2(t+1)²-4t=2[(t+1)²-2t]=
=2(t²+2t+1-2t)=2(t²+1)
2)Разложить на множители
а)х³-9=х(х²-9)=х(х-3)(х+3)
б)-5a²-10ab-5b²= -5(a²+2ab+b²)=
= -5(a+b)²= -5(a+b)(a+b)
3)Упростить
(у²-2у)²-у²(у+3)(у-3)+2у(2у²+5)=
=у⁴-4у³+4у²-у²(у²-9)+4у³+10у=
=у⁴-4у³+4у²-у⁴+9у²+4у³+10у=
=13у²+10у=у(13у+10)
4)Разложить на множители
а)16х⁴-81=(4х²-9)(4х²+9)
б)х²-х-у²-у=(х²-у²)-(х+у)=
=[(x-y)(x+y)-(x+y)]=
=(х+у)(х-у-1)
в)64а⁸-1=(8а⁴-1)(8а⁴+1)
5)Уравнение
а)5х³-45х=0
5х(х²-9)=0
5х=0
х₁=0
х²-9=0
х²=9
х₂,₃=±√9
х₂=3
х₃= -3
б)16х³-8х²+х=0
х(16х²-8х+1)=0
х₁=0
16х²-8х+1=0
х₂,₃=(8±√64-64)/32
х₂,₃=(8±√0)/32
х₂,₃=(8±0)/32
х₂= 8/32=1/4
4син^2(х)-3син(х)кос(х)-кос^2(х)=0.
Делим на кос^2(х), так как х=π/2+πн не является корнем.
4тан^2(х)-3тан(х)-1=0, пусть тан(х)=а
4а^2-3а-1=0, д=9+16=25, а1=1, а2=-1/4, тогда : совокупность: тан(х)=1, тан(х)=-1/4, х1=π/4+πн, нэз; х2= -арктан(1/4)+пк, кэз.
Всё)...