1)область визначення множина дійсних чисел (симетрична відносно початку координат)
y(-x)=5(-х)²+1=5х²+1=y(x) - значить дана функція парна за означенням парної функції
2) область визначення множина дійсних чисел (симетрична відносно початку координат)
y(-x)=(-х)⁵+3(-х)³-(-х)=-х⁵-3х³+х=-(х⁵+3х³-х)=-y(x) значить дана функція непарна за означенням непарної функції
3) область визначення множина дійсних чисел (симетрична відносно початку координат)
y(1)=2*1⁴-1³+1=2-1+1=2
y(-1)=2*(-1)⁴-(-1)³+1=2+1+1=4
y(1)не дорівнює y(-1), значить функція не є парною
y(1) не дорівнює -y(-1), значить функція не є не парною
значить дана функція ні парна, ні непарна
4) область визначення множина дійсних чисел, за виключенням точки 0 (симетрична відносно початку координат)
y(-x)=3(-х)-2/(-х)=-3x+2/x=-(3x-2/x)=-y(x) значить дана функція непарна за означенням непарної функції
5) область визначення множина дійсних чисел (симетрична відносно початку координат)
y(1)=4*1²+[1]=4+1=5
y(-1)=4(-1)²+[-1]=4-1=3
y(1)не дорівнює y(-1), значить функція не є парною
y(1) не дорівнює -y(-1), значить функція не є не парною
значить дана функція ні парна, ні непарна
далее строй графики. У тебя графики прямых, поэтому достаточно найти две точки для каждого.
Для первого можно взять точки при х=0 и при х= 5), тогда имеешь А(0, -5), В (5,0). Прямая пересекает оси координат в точках: ось Y в точке -5, а ось X в точке 5. Прямая располагается в третьей и первой четвертях, частично проходя через вторую четверть.
Аналогично строишь график прямой для второй функции. Также достаточно двух точек, например для х=0 и х=-1. Тогда имеешь точки С(0, -1/2) и Д (-1, 0).
Прямая пересекает оси координат в точках: ось Y в точке -1/2, а ось X в точке -1. Прямая располагается во второй и четвертой четвертях, частично проходя через третью четверть.
Далее находишь графическое решение, т.е. координаты точки пересечения этих прямых.