У нас есть десятичная дробь: 0,232323...=0,(23) Поступим таким образом: 1) Подсчитаем, сколько цифр в периоде (в скобках). Их - 2. 2) Подсчитаем, сколько цифр до периода, но после запятой. Их 0. 3) Представим число, как целое. Получится 23. 4) Т.к. во 2 пункте указано, что чисел нет, то число будет равно 0.
Теперь, чтобы перевести в обыкновенную дробь, надо из нашего целого числа вычесть число, стоящие до периода. В знаменателе записать 9 столько раз, сколько цифр в периоде, и поставить столько 0, сколько цифр до периода, но после запятой. Получим следующее:
Т.к. а- натуральное число, то а=0 мы рассматривать не будем. Представим,что у нас неполное квадратное уравнение: 1) пусть a^2-25=0 ( нет свободного члена). a1=-5; a2=5 тогда уравнение будет выглядеть так: x^2-(2a-4)x=0 x(x-2a+4)=0 - как видим, уравнение имеет два корня a=-5 - не удовлетворяет условию, т.к. не является натуральным числом.
2) пусть теперь средний коэффициент равен нулю 2a-4=0; a=2 Уравнение примет вид: x^2+2^2-25=0 x^2=21 - два корня
3) Рассмотрим теперь полное квадратное уравнение с обязательным условием,что D>=0. D=(2a-4)^2-4(a^2-25)=4a^2-16a+16-4a^2+100=-16a+116>=0; -16a>=-116; a<=7,25 Т.к. а - натуральное число, то а =1,2,3,4,5,6,7.
2) x^5 ≤ 32; x^5≤2^5; x≤2.
3) 3x³>24; x³>8; x³>2³; x>2