Функция вида y = kx + b, заданная на множестве всех действительных чисел, называется линейной функцией.
k – угловой коэффициент (действительное число), равный тангенсу угла наклона графика функции к оси ОХ.
b – свободный член (действительное число), показывающий смещение точки пересечения графиком функции оси ОY от начала координат.(Если b = 0, то график функции проходит через точку (0; 0))
x – независимая переменная.
Графиком линейной функции является прямая. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
В частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b).
1). Очевидно, что первые две прямые являются таким частным случаем.
То есть в функциях у = 0 и у = 6 коэффициент k равен нулю, а коэффициенты b равны 0 и 6 соответственно.
Так как в обеих функциях коэффициент k = 0, то графики функций имеют одинаковый угол наклона к оси ОХ, равный нулю. Следовательно, графики данных функций параллельны друг другу.
Расстояние между графиками определяется разностью коэффициентов b:
b₂ - b₁ = 6 - 0 = 6
Таким образом, графики функций у = 0 и у = 6 параллельны друг другу и оси ОХ и отстоят друг от друга на 6 единиц по оcи OY.
2). Графики функций у = 0,5х + 4 и у = 0,5х - 4 имеют коэффициенты:
k₁ = 0,5; k₂ = 0,5 и коэффициенты b₁ = 4; b₂ = -4
Так как k₁ = k₂, то графики функций имеют одинаковый угол наклона к оси ОХ и, следовательно, также параллельны друг другу.
Расстояние между точками пересечения графиками функций оси OY равно:
b₁ - b₂ = 4 - (-4) = 4 + 4 = 8
Таким образом, графики функций у = 0,5х + 4 и у = 0,5х - 4 параллельны друг другу и не параллельны оси ОХ и отстоят друг от друга на 8 единиц по оcи OY.
функция задана формулой у=18-2х^2. Не выполняя построения определите
а) координаты точек пересечения графика функции с осями координат
Пересечение в осью Ох: у=0
18-2x²=0
2x²=18
x²=9
x=3 или x=-3
точки пересечения (3;0) или (-3;0)
Пересечение с осью Оу: х=0
18-2*0=18
Точка пересечения (0;18)
б)значение функции если значение аргумента равно 2
18-2*2²=18-2*4=18-8=10
Значение функции y(2)=10
в)значение аргумента, при котором значение функции равно 16
18-2x²=16
2x²=2
x²=1
x=1 или х= -1
г)проходит ли график функции через точку В (-2: 10)
х=-2 у=10
18-2*(-2)²=18-2*4=18-8=10
Да, проходит
2
функция задана формулой у=2х^2-8 . Не выполняя построения определите
а) координаты точек пересечения графика функции с осями координат
пересечение с осью Ох: у=0
2x²-8=0
2x²=8
x²=4
x=2 или х=-2
Точки пересечения (2;0) или (-2;0)
пересечение с осью Оу: х=0
2*0-8= -8
Точка пересечения (0;-8)
б)значение функции если значение аргумента равно 3
у(3)=2*3²-8=2*9-8=18-8=10
в)значение аргумента, при котором значение функции равно -6
2x²-8= -6
2x²=2
x²=1
x=1 или х= -1
г)проходит ли график функции через точку А( -3:10)
х= -3 у=10
2*(-3)²-8=2*9-8=18-8=10
Да, проходит