В решении.
Объяснение:
Дана функция у = -1/2 х² + 3х; найти промежуток её убывания.
Построить график функции.
Сначала преобразовать уравнение функции для упрощения.
-1/2 х² + 3х = -0,5х² + 3х, неполное квадратное уравнение.
Приравнять к нулю:
-0,5х² + 3х = 0
0,5х (-х + 6) = 0
0,5х = 0;
х₁ = 0;
-х + 6 = 0
-х = -6
х = 6;
График - парабола, ветви направлены вниз, пересекают ось Ох в точках: х = 0; х = 6 (нули функции).
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2 4 6 8
у -8 -3,5 0 2,5 4 4 0 -8
По вычисленным точкам построить параболу.
Согласно графика, функция убывает в промежутке х∈(3; +∞).
Объяснение: y=f(x)
1) D(f) . Область определения - это множество значений "х", на котором задаётся функция . Если задан график, то, чтобы определить ООФ, надо все точки, лежащие на графике, спроектировать на ось ОХ. Полученное множество и будет ООФ.
Все точки данного графика проектируются на все точки оси ОХ. То есть получаем множество всех действительных чисел.
P.S. Множество значений функции E(f) - это значения, которые может принимать переменная "у" . Чтобы найти E(f) по графику, надо проектировать точки графика на ось ОУ. Для изображённой функции E(f)=[ -2; 2 ] .
2) Точка пересечения с осью ОХ - (0,0). Эта же точка (0,0)- точка пересечения с осью ОУ.
3) Функция возрастает на промежутке [ -3; 3 ] , х∈[ -3;3 ]. Если вести карандашом по графику от точки (-3,-2) до точки (3,2), то карандаш движется вверх, функция возрастает.
Промежутков убывания нет (нет участков, на которых карандаш движется вниз) .
P.S. Есть промежутки постоянства функции (где карандаш движется по прямой), это участки х∈(-∞ -3] и х∈[ 3,+∞).
4) Нули функции - это значения "х", при которых "у" обращается в 0 . Для изображённой функции - это х=0 (см. пункт 2). То есть f(0)=0.
5) Наибольшее значение функции - это у=2 , наименьшее значение функции - это у= -2 ( cм. пункт 1 , P.S. )
113/22 > 1
73/22 > 1
2) 58/13 < 69/13
58/13 > 1
69/13 > 1