Пусть собственная скорость теплохода х км/ч. Скорость теплохода по течению реки равна (х + 3) км/ч. Скорость теплохода против течения реки (х – 3) км/ч. На путь по течению реки теплоходу понадобилось 76/(х + 3) часа, а на путь против течения реки – 76/(х – 3) часа. На весь путь туда и обратно теплоход потратил (76/(х + 3) + 76/(х – 3)) часа или (20 – 1) = 19 часов. Составим уравнение и решим его.
76/(х + 3) + 76/(х – 3) = 19 – приведем к общему знаменателю (х + 3)(х – 3) = x^2 – 9; первую дробь домножим на (х – 3), вторую – на (х + 3) и число 19 – на (x^2 – 9); далее решаем без знаменателя, т.к. две дроби с одинаковым знаменателем равны, если равны их числители;
76(x – 3) + 76(x + 3) = 19(x^2 – 9);
76x – 228 + 76x + 228 = 19x^2 – 171;
-19x^2 + 76x + 76x + 171 = 0;
19x^2 – 152x – 171 = 0;
D = b^2 – 4ac;
D = (- 152)^2 – 4 * 19 * (- 171) = 23104 + 12996 = 36100; √D = 190;
x = (- b ± √D)/(2a);
x1 = (152 + 190)/(2 * 19) = 342/38 = 9 (км/ч);
x2 = (152 – 190)/(2 * 19) < 0 – скорость не может быть отрицательным числом.
ответ. 9 км/ч
Объяснение:
думаю ))
1
Нужно начертить оси Х и Y, построить по заданным точкам вершины параллелограмма А, В и Д, соединить их, а так как в параллелограме стороны параллельны, то достроить его (параллелограмм) и вычислить точку С и ее координаты, т.е. это нужно высчитывать графиически или
и так разберемся здесь все просто
надо просто перенести x точки B на длину отрезка AD
Cx=((Ax-Dx)^2+(Ay-Dy)^2)^0.5 +Bx
Cy=By ( просто нарисуй )
при х=2,потому что ,скалярное произведение векторов равно 4х-8
а т.к. перпендикулярны,оно должно быть равно нулю
4х-8=0
4х=8
х=2
3 не могу прости
2) 9x²y³ - 27x⁴y² + 18x³y⁵ = 9x²y²(y - 3x²+2xy³)