32a+8c-2c+a=33a+6c (33a мы получили так: 32a+a) (6c мы получили так:8c-2c) 38d-28x+2x+15x=38d-11x (11x мы получили так: -28x+2x+15x) 43b+d+d-2b=41b+2d (41b мы получили так: 43b-2b) (2d мы получили так: d+d) 29c-20m-m+6m=29c-15m (-15m мы получили так: -20m-m+6m)
Логарифм единицы.loga1=0 Логарифм единицы равен нулю ( а>0, a≠1).Примеры. Вычислить:1) log71=0, 2) lg1=0, 3) ln1=0,так как 70=1. так как 100=1. так как е0=1.4) 52log51=52∙0=50=1. 5) 43lg1=43∙0=40=1. 6) 85ln1=85∙0=80=1. e3+5lg1=e3+5∙0=e3. 106ln1-2=106∙0-2=10-2=0,01. 35lg1+4=35∙0+4=34=81.Решить уравнение.1) log2(x+4)=log81; 2) log3(x-1)+5log181=log12(5∙0,2);log2(x+4)=0; log3(x-1)+5∙0=log121;x+4=20; log3(x-1)=0;x+4=1; x-1=30;x=1-4; x-1=1;x=-3. x=2.3) lg (2x+1) -7log21=ln1;lg (2x+1) -7∙0=0;lg (2x+1)=0;2x+1=100;2x+1=1;2x=0;x=0.11.4.4. Натуральный логарифмЛогарифм по основанию е (Неперово число е≈2,7) называют натуральным логарифмом.ln7=loge7, ln7 – натуральный логарифм числа 7.Примеры.Вычислить, используя определение логарифма.1) lne². По определению натуральный логарифм числа e² — это показатель степени, в которую нужно возвести число е, чтобы получить число е². Очевидно, что это число 2. lne²=2.2) ln (1/e). По определению натуральный логарифм числа 1/е — это показатель степени, в которую нужно возвести число е, чтобы получить 1/е. Очевидно, что это число -1, так как е-1=1/е.ln (1/e)=-1.3) lne3+lne4=3+4=7.4) lne-ln (1/e2)=1- (-2)=1+2=3.Вычислить, применив основное логарифмическое тождество: и формулу возведения степени в степень: (am)n=amn=(an)m .1) eln24=24.2) e2ln11=(eln11)2=112=121.3) e-ln20=(eln20)-1=20-1=1/20=0,05.4) (e4)ln5=(eln5)4=54=625.Упростить, применив основное логарифмическое тождество: формулу возведения степени в степень: (am)n=amn=(an)m ;формулу произведения степеней с одинаковыми основаниями: am∙an=am+n и формулу возведения в степень произведения: (a∙b)n=an∙bn.1) eln4+2=eln4∙e2=4∙e2=4e2.2) e1+ln3=e1∙eln3=e∙3=3e.3) (e4+ln5)2=(e4∙eln5)2=(e4∙5)2=e4∙2∙52=e8∙25=25e8.4) (eln2+3)4=(eln2∙e3)4=(2∙e3)4=24∙e3∙4=16e12.Упростить, применив основное логарифмическое тождество: формулу возведения степени в степень: (am)n=amn=(an)m ; формулу частного степеней с одинаковыми основаниями: am:an=am-n и формулу возведения в степень произведения: (a∙b)n=an∙bn.1) e2-ln3=e2:eln3=e2:3=e2/3.2) e1-ln5=e1:eln5=e:5=e/5=0,2e.3) (e5-ln10)3=(e5:eln10)3=(e5:10)3=(0,1e5)3=0,13∙e5∙3=0,001e15.4) (e3-ln2)4=(e3:eln2)4=(e3:2)4=(0,5e3)4=(0,5)4∙(e3)4=0,0625e12. 11.4.3. Десятичный логарифмЛогарифм по основанию 10 называют десятичным логарифмом и при написании опускают основание 10 и букву «о» в написании слова «log».lg7=log107, lg7 – десятичный логарифм числа 7.Примеры. Вычислить:lg10; lg100; lg1000; lg0,1; lg0,01; lg0,001.1) lg10=1, так как 101=10.2) lg100=2, так как102=100.3) lg1000=3, так как 103=1000.4) lg0,1=-1, так как 10-1=1/10=0,1.5) lg0,01=-2, так как 10-2=1/102=1/100=0,01.6) lg0,001=-3, так как 10-3=1/103=1/1000=0,001.Найти значение выражения: 10lg8; 10lg4+10lg3,5; 105lg2; 100lg3; 10lg5+2; 10lg60-1.Используем:основное логарифмическое тождество:(см. предыдущий урок 11.4.2. «Примеры на основное логарифмическое тождество»здесь)формулу произведения степеней с одинаковыми основаниями: am∙an=am+n,формулу частного степеней с одинаковыми основаниями: am:an=am— n1) 10lg8=82) 10lg4+10lg3,5=4+3,5=7,5.3) 105lg2=(10lg2)5=25=32.4) 100lg3=(102)lg3=(10lg3)2=32=9.5) 10lg5+2=10lg5∙102=5∙100=500.6) 10lg60-1=10lg60:101=60:10=6.Решить уравнение.1) lgx=10lg30-1.Упростим правую часть равенства как в предыдущих примерах.lgx=10lg30:101;lgx=30:10;lgx=3;x=103;x=1000.2) lg (x+3)=2.x+3=102;x+3=100;x=100-3;x=97.3) lg (x+5)=-1.x+5=10-1;x+5=0,1;x=0,1-5;x=-4,9.11.4.2. Примеры на основное логарифмическое тождество Это основное логарифмическое тождество.Это тождество следует из определения логарифма: так как логарифм – это показатель степени (n), то, возводя в эту степень число а, получим число b.Примеры.Вычислить: При решении используем формулу возведения степени в степень: (am)n=amn=(an)m и основное логарифмическое тождество.Найти значение выражения: Используем формулу произведения степеней с одинаковыми основаниями: am∙an=am+n и основное логарифмическое тождество.Найти значение выражения:Используем формулу частного степеней с одинаковыми основаниями: am:an=am— nи основное логарифмическое тождество.11.4.1. Определение логарифмаЛогарифмом числа b по основанию а (logab) называют показатель степени, в которую нужно возвести число а, чтобы получить число b.logab=n, если an=b. Примеры: 1) log28=3, т. к. 23=8;2) log5(1/25)=-2, т. к. 5-2=1/52=1/25; 3) log71=0, т. к. 70=1. Вычислить:1) log464+log525. Используем значения степеней: 43=64, 52=25 и определение логарифма.log464+log525=3+2=5.2) log2log381. Используем значения степеней: 34=81, 22=4 и определение логарифма.log2log381=log24=2.3) log5log9log2512. Используем значения степеней: 29=512, 50=1 и определение логарифма.log5log9log2512=log5log99=log51=0.Решить уравнение.1) log7x=2. По определению логарифма составим равенство: x=72, отсюда х=49.2) log3(x-5)=2.По определению логарифма:х-5=32;х-5=9;х=9+5;х=14.3) |log6(x+4)|=2.Освободимся от знака модуля.или log6(x+4) =2;x+4=62;x+4=36;x=36-4;x=32.
Сумма первого и последнего члена этой прогрессии равна 138. Оба этих числа -двузначные. Значит первое число принимает значения от 39 (=138-99 максимальное значение двузначного числа - 99) до 69 (крайний случай - числа последовательности равны (d = 0)) Пример: Берем первую из этих последовательностей (у нее наибольшая разность - 20) 39, 59, 79, 99
Произведения цифр (3*9, 5*9, 7*9, 9*9) составляют арифметическую прогрессию с разностью 2*9=18.
Теперь найдем наибольшую разность: У нас есть пример с 27, где последнее число имеет наибольшее возможное произведение цифр двузначного числа, поэтому имеет смысл рассматривать лишь числа с произведением цифр < 27.
Кроме того, последнее число дает остаток при делении на 3, значит разность дает остаток при делении на 3, но их разность кратна 3. Поэтому первое число кратно 3.
Теперь кандидаты на первое число: 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69. 4*8=32>27 5*7=35>27 6*6=36>27 6*9=54>27 Остались: 39, 42, 45, 51, 54, 60, 63 Построим соответствующие прогрессии (кроме 39, уже строили) 42, 60, 78, 96 - произведение цифр не арифметическая прогрессия 45, 61, 77, 93 - произведение цифр не арифметическая прогрессия 51, 63, 75, 87 - произведение цифр не арифметическая прогрессия 54, 64, 74, 84 - произведение цифр арифметическая прогрессия с разностью 4 60, 66, 72, 78 - произведение цифр не арифметическая прогрессия 63, 67, 71, 75 - произведение цифр не арифметическая прогрессия
38d-28x+2x+15x=38d-11x (11x мы получили так: -28x+2x+15x)
43b+d+d-2b=41b+2d (41b мы получили так: 43b-2b) (2d мы получили так: d+d)
29c-20m-m+6m=29c-15m (-15m мы получили так: -20m-m+6m)