1)
ОДЗ:
⇒
⇒ ![x \in (-\infty; -2] \cup [3;+\infty)](/tpl/images/1361/5355/f678f.png)
⇔
или 
⇒
или
⇒
или
или 
не входит в ОДЗ
два корня
или 
при ![x \in (-\infty; -2] \cup [3;+\infty)](/tpl/images/1361/5355/f678f.png)
, тогда
⇒
⇒ 
C учетом
получаем ответ:

2)
ОДЗ:
⇒
⇒ ![x \in (-\infty; -2] \cup [4;+\infty)](/tpl/images/1361/5355/4ed2b.png)
⇔
или 
⇒
или
⇒
или
или 
не входит в ОДЗ
два корня
или 
при ![x \in (-\infty; -2] \cup [4;+\infty)](/tpl/images/1361/5355/4ed2b.png)
, тогда
⇒
⇒ 
C учетом
получаем ответ:
![(-\infty;-2]\cup \{2\}](/tpl/images/1361/5355/83f26.png)
3)

Так как
при любых х, возводим данное неравенство в квадрат:


D=16-12=4


Показательная функция с основанием 3 возрастает

О т в е т. (0;1)
4)

Так как
при любых х, возводим данное неравенство в квадрат:



D=36-20=16


Показательная функция с основанием 5 возрастает

О т в е т. (0;1)
Искомая функция
.
Найдем значения искомой функции в заданных точках х:





Кроме этого, для каждого из аргументов есть еще и экспериментальное значение, которое обозначим через функцию
:

Составим функцию
, которая будет суммировать квадраты разностей значений функций
и
соответствующих аргументов:

Исследуем эту функцию на экстремум.
Найдем частные производные:






Необходимое условие экстремума: равенство нулю частных производных:

Домножим второе уравнение на (-3):

Складываем уравнения:


Подставим значение а во второе уравнение исходной системы:




Точка (0.5; -0.3) - предполагаемая точка экстремума.
Найдем вторые частные производные функции:



Рассмотрим выражение:

Так как
и
, то точка (0.5; -0.3) является точкой минимума.
Значит, в точке (0.5; -0.3) функция
имеет минимум.
Тогда, значения
и
есть искомые коэффициенты функции
.

ответ: 
Sполн = 6a² = 6 * 22² = 6 * 484 = 2904