1)
ОДЗ: ⇒
⇒
⇔
или
⇒
или
⇒
или
или
не входит в ОДЗ
два корня или
при
, тогда
⇒
⇒
C учетом получаем ответ:
2)
ОДЗ: ⇒
⇒
⇔
или
⇒
или
⇒
или
или
не входит в ОДЗ
два корня или
при
, тогда
⇒
⇒
C учетом получаем ответ:
3)
Так как при любых х, возводим данное неравенство в квадрат:
D=16-12=4
Показательная функция с основанием 3 возрастает
О т в е т. (0;1)
4)
Так как при любых х, возводим данное неравенство в квадрат:
D=36-20=16
Показательная функция с основанием 5 возрастает
О т в е т. (0;1)
Искомая функция .
Найдем значения искомой функции в заданных точках х:
Кроме этого, для каждого из аргументов есть еще и экспериментальное значение, которое обозначим через функцию :
Составим функцию , которая будет суммировать квадраты разностей значений функций
и
соответствующих аргументов:
Исследуем эту функцию на экстремум.
Найдем частные производные:
Необходимое условие экстремума: равенство нулю частных производных:
Домножим второе уравнение на (-3):
Складываем уравнения:
Подставим значение а во второе уравнение исходной системы:
Точка (0.5; -0.3) - предполагаемая точка экстремума.
Найдем вторые частные производные функции:
Рассмотрим выражение:
Так как и
, то точка (0.5; -0.3) является точкой минимума.
Значит, в точке (0.5; -0.3) функция имеет минимум.
Тогда, значения и
есть искомые коэффициенты функции
.
ответ:
Sполн = 6a² = 6 * 22² = 6 * 484 = 2904