Пусть изначальное число xy, т.е х десятков и у единиц. ху=10х+у сумма цифр равна 10, т.е х+у=10 переставили цифры: ух, теперь ух=10у+х цифру единиц увеличили на 1, т.е. 10у+х+1 и раз новое число в 2 раза больше изначального можно составить уравнение: 10у+х+1=2(10х+у) 10у-2у=20х-х-1 8у=19х-1 выразим из первого уравнения х+у=10: у=10-х 8(10-х)=19х-1 19х+8х=80+1 27х=81 х=3 тогда у=10-х=10-3=7 получилось число 37 проверяем сумма цифр: 3+7=10 Если цифры этого числа переставить и цифру единиц нового числа увеличить на 1: получаем 73+1=74 и 74/2=37
В1) F(x)=3x+x³/3+C Подставляем координаты точки М и находим С 6=3*1+1³/3+С ответ:
В2) F(x)=x³/3+3x²/2+C Поскольку F'(x)=х²+3х, то для нахождения точек экстремума приравняем ее 0 х²+3х=0 x(x+3)=0 Произведение равно 0, когда хотя бы один из множителей равен 0. Поэтому x₁=0 x₂+3=0 x₂=-3 Определяем знаки интервалов + - + ---------------₀---------------₀----------------> -3 0 В точке -3 производная меняет знак с плюса на минус, значит, это точка максимума В точке 0 производная пеняет знак с минуса на плюс, значит, это точка минимума На промежутке (-∞;-3] и [0;∞) функция возрастает На промежутке [-3;0] функция убывает
С1) Найдем производную F'(x)=(х⁵+3х²-cosх+17)'=5x⁴+sinx F'(x)=f(x) для всех х∈(-∞;+∞) Следовательно, F(x) есть первообразная для f(x). Что и требовалось доказать
3
2
3
2)2
2
3
2
3)2
2
3
2
4)5
5
4
5
5)7
7
6
7