По теореме Виета для уравнение четвертой степени получаем соотношение \sqrt{y_{1}y_{2}}+\sqrt{y_{1}y_{3}}+\sqrt{y_{1}y_{4}}+\sqrt{y_{2}y_{3}}...+ = \frac{a_{3}}{a_{1}} \\ \sqrt{y_{1}y_{2}y_{3}}+\sqrt{y_{1}y_{2}y_{4}} [/tex]
Учитывая условия что коэффициенты все выражаются в радикалах , то сумма всех корней выраженные в радикалах есть число радикальное . По третьем равенству первой системы , то произведение корней так же число радикальное , откуда с последних двух идет верное равенство
24 минуты = 24/60 часа = 4/10 часа = 0,4 часа. Пусть х - намеченная скорость. Тогда х-10 - сниженная скорость. 4х - расстояние между городами. 2х - длина части пути, пройденная с намеченной скоростью. 4х-2х - длина части пути, пройденная со сниженной скоростью. (4х-2х)/(х-10)- время, затраченное на часть пути со сниженной скоростью. Уравнение: 2 + (4х-2х)/(х-10) = 4 + 0,4 2 + 2х/(х-10) = 4,4 2х/(х-10) = 4,4-2 2х/(х-10) = 2,4 2х = 2,4(х-10) 2х = 2,4х - 24 2,4х-2х = 24 0,4х = 24 х = 24:0,4 х = 60 км/ч - первоначальная скорость автомобиля. ответ: 60 км/ч.
Проверка: 1) 60•4=240 км - расстояние между городами. 2) 2•60 = 120 км - длина пути, пройденная с намеченной скоростью. 3) 60-10=50 км/ ч - сниженная скорость. 4) 2+0,4 = 2,4 часа время езды со сниженной скоростью. 5) 50•2,4 = 120 км - длина пути, пройденная со сниженной скоростью. 6) 120+120=240 км - длина всего пути.