* * * * * * * * * * * * * * * * * * * * * * * *
Найдите наименьшее значение функции y=(2x⁴+7x²+32) /x²
ответ: min y = 23 .
Объяснение: ОДЗ : x ≠ 0 ( x=0 вертикальный асимптот )
y=(2x⁴+7x²+32) /x² = 2x² +7 +32/x²
Четная функция ⇒ график симметрично относительно оси ординат ( x=0 вертикальный асимптот ) и y > 0 .
y ' =4x- 64 /x³=4(x⁴ -16)/x³= 4(x²+4)(x²-4) / x³=4(x²+4)(x+2)(x-2) / x³
критические точки : y ' =0 ⇔(x+2)(x-2) = 0
x₁ = -2 , x₂ =2 .
y ' = ( 4(x²+4)/x² ) * (x+2)(x-2) / x * * * 4(x²+4)/x² > 0 * * *
y' " -" "+" "-" "+"
[-2] (0) [2]
x=2 точка минимума
min y: y(-2) =y(2) =2*2²+7 +32/2² =8+7+8 =23
2x² - 0,5 ≤ 0
2(x² - 0,25) ≤ 0
x² - 0,25 ≤ 0
(x - 0,5)(x + 0,5) ≤ 0
+ - +
- 0,5 0,5
x ∈ [- 0,5 ; 0,5]