объяснение:
выражение ( а - 6 ) * ( а + 2 ) - ( а + 5 ) * ( а - 7 ) и найдем значение выражения при а = - 6,5.
раскрываем скобки. для этого каждые значения в первой скобке, умножаем на каждое значение во второй скобке, и складываем их в соответствии с их знаками. тогда получаем:
( а - 6 ) * ( а + 2 ) - ( а + 5 ) * ( а - 7 ) = a ^ 2 + 2 * a - 6 * a - 6 * 2 - ( a ^ 2 - 7 * a + 5 * a - 5 * 7 ) = a ^ 2 + 2 * a - 6 * a - 12 - ( a ^ 2 - 7 * a + 5 * a - 35 ) = a ^ 2 - 4 * a - 12 - ( a ^ 2 - 2 * a - 35 ) = a ^ 2 - 4 * a - 12 - a ^ 2 + 2 * a + 35 = - 4 * a - 12 + 2 * a + 35 = - 2 * a + 23 = - 2 * ( - 6.5 ) + 23 = 13 + 23 = 36.
ответ:
объяснение:
здесь область допустимых значений состоит только из двух
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)
решение: х ∈ (-∞; 1] u [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
ответ: х=3