2 см и 2 см
Объяснение:
Дан прямоугольник, периметр которого равен 8 см. Тогда сумма двух сторон равна 8:2 = 4 см. Обозначим через x одну сторону прямоугольника. Тогда вторая сторона равна: 4–x. Теперь составим функцию площади прямоугольника: y=x·(4–x)=4·x-x². Дифференцируем функцию
y'=(4·x–x²)'=4–2·x.
Находим критические точки функции:
y'=0 ⇔ 4–2·x=0 ⇔ x=2 – критическая точка.
Проверим знаки производной:
при x<2: y'=4–2·x>0 и при x>2: y'=4–2·x<0.
Значит, x=2 точка максимума. Тогда
yмакс=y(2)=4·2–2²=8–4=4 см²,
а стороны x=2 см и 4–2=2 см.
1) домножим левую и правую части на x. чтобы избавиться от дроби
3x^2 + 3 = 6x
3x^2 - 6x + 3 = 0
D = b^2 - 4ac = (-6)^2 - 4 *3 * 3 = 36 -36 = 0. [1 корень]
x= -b /2a = 6 / 6 =1
ответ: 1
2) приводим дроби к общему знаменателю
к первой дроби доп.множитель Х, ко второй (x^2 +2)
3x - (x^2 +2) -x^2 + 3x - 2
-->
x (x^2 + 2) x (x^2 + 2)
система:
{-x^2 + 3x - 2 = 0
{x (x^2 + 2) 0
-x^2 + 3x - 2 = 0
D = b^2 - 4ac = 9 - 8 = 1 2 корня
x1,2 = -b ± √D / 2a
x1 = -3 + 1 /-2 = -2/-2 = 1
x2 = -3 -1 / -2 = -4/-2 = 2
ответ: 1;2
фото прикреплю, так легче
ответ:
объяснение:
условие неверно.