Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.
Дано: ABCD, AD║ BC, AD = BC.
Доказать: ABCD - параллелограмм.
Доказательство:
Проведем BD.
ВС = AD по условию,
∠1 = ∠2 как накрест лежащие при пересечении AD║BC секущей BD,
BD - общая сторона для треугольников ABD и CDB, ⇒
ΔABD = ΔCDB по двум сторонам и углу между ними.
Из равенства треугольников следует, что
∠3 = ∠4, а это накрест лежащие углы при пересечении прямых CD и АВ секущей BD, значит
CD║AB.
Если в четырехугольнике противоположные стороны параллельны, то это параллелограмм.
2 признак.
Если в четырехугольнике противоположные стороны равны, то этот четырехугольник - параллелограмм.
Дано: ABCD, AB = CD, BC = AD.
Доказать: ABCD - параллелограмм.
Доказательство:
Проведем BD.
ВС = AD по условию,
AB = CD по условию,
BD - общая сторона для треугольников ABD и CDB, ⇒
ΔABD = ΔCDB по трем сторонам.
Из равенства треугольников следует, что
∠1 = ∠2, а это накрест лежащие углы при пересечении прямых ВС и AD секущей BD, значит ВС║AD и ABCD - параллелограмм по первому признаку.
3 признак.
Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.
Дано: ABCD, AC∩BD = O, AO = OC, BO = OD.
Доказать: ABCD - параллелограмм.
Доказательство:
AO = OC по условию,
BO = OD по условию,
∠АОВ = ∠COD как вертикальные, ⇒
ΔАОВ = ΔCOD по двум сторонам и углу между ними.
Значит, AB = CD и ∠1 = ∠2, а это накрест лежащие углы при пересечении прямых АВ и CD секущей АС, значит АВ║CD.
ABCD - параллелограмм по первому признаку.
1) стороны прямоугольника a₁ = 1 см b₁ = 13 см
2) стороны прямоугольника a₂ = 6 см b₂ = 8 см
Объяснение:
а - меньшая сторона прямоугольника
b - большая сторона прямоугольника
2a + 2b = 28 - периметр прямоугольника
а + b = 14
b = 14 - a (1)
ab - площадь прямоугольника
а² - площадь квадрата
ab - a² = 12 (2)
Подставим (1) в (2)
а · (14 - а) - а² = 12
14а - а² - а² = 12
2а² - 14а + 12 = 0
а² - 7а + 6 = 0
D = 7² - 4 · 6 = 25
√D = 5
a₁ = 0.5(7 - 5) = 1 (см) b₁ = 14 - 1 = 13 (см)
a₂ = 0.5(7 + 5) = 6 (см) b₂ = 14 - 6 = 8 (см)
Общий вид: ax^2+bx+c
Пример: x^2+x+6
Формула D: b^2-4ac
Решаем: 1^-4*1*6=25=5^2
Далее формула такая: -b^2+-корень из D(наше число 5)/ 2a
Выходит:1^2+-5/2*1=
Далее идет нахождение двух корней. Один через +, другой через -
1+5/2=3 или 1-5/2= -2
3 и -2 корни уравнения