С2+6с-40=0 Выделим в левой части полный квадрат. Для этого запишем выражение с2+6с в следующем виде: с2+6с=с2+2*3*с. В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате. Преобразуем теперь левую часть уравнения с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем: с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0 Таким образом, данное уравнение можно записать так: (с + 3)в квадрате - 49 =0, (х + 3)в квадрате = 49. Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
При бросании кубика дважды равновозможны 6 · 6 = 36 различных исходов. Число 2 будет наименьшим из выпавших, если хотя бы один раз выпадает 2 и ни разу — 1. То есть либо на первом кубике должно выпасть 2 очка, а на втором — любое число кроме 1, либо наоборот, на втором кубике должно выпасть 2, а на первом — любое число кроме 1. Также необходимо помнить, что при таком подсчёте вариант, когда на обоих кубиках выпадает двойка, мы учитываем дважды: 5 + 5 − 1 = 9. Поэтому вероятность того, что наименьшее из двух выпавших чисел — 2 равна
-9x+2.5x=8-21
-6.5x=-13
x=2
y=21-9•2= 3 A(2;3)
2) 16.2+8x= -0.8x+7.4
8x+0.8x=7.4-16.2
8.8x=-8.8
x= -1
y= 16.2+8•(-1)= 8.2 A(-1;8.2)