: если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором
. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения
, два произвольных числа, но
. Пусть мы имеем функцию
, тогда вычисляем значения функции в этих двух точках, имеем
и
, так вот, если
, тогда функция возрастающая, если же
, то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)
, т.е. функция возрастающая. А вот задание с
не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной)
. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка):
, функция возрастает, что и требовалось доказать.
1) a1=8.2, a2=6.6
d=a2-a1=6.6-8.2=-1.6
-15.8=a1+(n-1)d
-15.8=8.2+(n-1)*(-1.6)
(n-1)*(-1.6)=-24
n-1=15
n=16
2) a1=5-1=4, a2=10-1=9
d=a2-a1=9-4=5
a14=a1+13d=4+13*5=4+65=69
S=(a1+a14)/2 *14=(a1+a14)*7=(4+69)*7=73*7=511
3) a3=a1+2d=6 => 2a1+4d=12
a5=a1+4d=10
2a1+4d-a1-4d=12-10
a1=2
4) b1=8, b2=-4
q=b2/b1=-4/8=-0.5
b4=b1*q^3=8*(-0,125)=-1
5) b1=8, b2=-4
q=b2/b1=-0.5
1/32 = b1*q^(n-1)
1/32 = 8 *(-0.5)^(n-1)
(-0.5)^(n-1)=1/256
n-1 = 8
n = 9
6) b1=2^(1-3)=2^-2=0.25
b2=2^(2-3)=2^-1=0.5
q=b2/b1=0.5/0.25=2
S=b1 * (q^10-1)/(q-1) = 0.25 *(2^10-1)/(2-1) = 0.25* 1023 = 255.75
8= -3•4+20