Каждый из юношей может устроиться на любой из
3 + 2 = 5
заводов. То есть для каждого юноши есть 5 вариантов.
всего юношей 3.
По условию задачи на одновременное трудоустройство на один завод запретов нет; следовательно события (работа для каждого юноши) можно считать независимыми
следовательно, общее число вариаций работы для юношей - это перемножение вариантов трудоустройства каждого:
С(общ.юн.) = С(1юн) * С(2юн) * С(3юн) = 5*5*5 = 125 вариантов
Для девушек: аналогичное рассуждение. Заводов
2 + 2 = 4
девушек 2
С(общ.дев.) = С(1дев) * С(2дев) = 4*4= 16 вариантов
Общее число для всех:С(общ) = С(общ.юн) * С(общ.дев) = 125 * 16 = 2000 вариантов.
ОТВЕТ
Каждый из юношей может устроиться на любой из
3 + 2 = 5
заводов. То есть для каждого юноши есть 5 вариантов.
всего юношей 3.
По условию задачи на одновременное трудоустройство на один завод запретов нет; следовательно события (работа для каждого юноши) можно считать независимыми
следовательно, общее число вариаций работы для юношей - это перемножение вариантов трудоустройства каждого:
С(общ.юн.) = С(1юн) * С(2юн) * С(3юн) = 5*5*5 = 125 вариантов
Для девушек: аналогичное рассуждение. Заводов
2 + 2 = 4
девушек 2
С(общ.дев.) = С(1дев) * С(2дев) = 4*4= 16 вариантов
Общее число для всех:С(общ) = С(общ.юн) * С(общ.дев) = 125 * 16 = 2000 вариантов.
ОТВЕТ
Прежде чем продолжить решение раскроем двойной угол и получим
Используя основное тригонометрическое тождество, представим 1,5 как 1,5 *1 получим:
Разделим все уравнение на
Мы свели уравнение к квадратному. Введём новую переменную
Получили обычное квадратное уравнение
Возвращаемся в замену
, где k - целое.
, где k - целое
ответ: где k - целое
где k - целое долго писала ну я так поняла