Третий закон Кеплера гласит - квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Проверим закон Кеплера на планете Земля. Принято, что расстояние от планета Земля до планеты Солнце равно 1 астрономическая единица (а. е.) и также считают, что Солнце - центр нашей планетарной системы, следовательно оно относительно нас недвижимо и формула (Тз/Тс)²=(Аз/Ас)³ превращается в формулу (Тз/1)²=(Аз/1)³ ⇒ (Тз)²=(Аз)³ ⇒ Тз=√(Аз)³. Так как на планете Земля Аз (период вращения вокруг планеты Солнце) 1 а. е. ⇒ Тз=√1³=1, то есть ≈365 земных дней. Теперь можно вычислить "звёздный период вращения планеты Марс" вокруг планеты Солнце: Тм=√(1,5)³≈1,837 земного года≈1,837*365≈671 земной день.
Известно, что велосипедисты встретились через час и продолжили движение. Можно написать через формулу: Пусть х-скорость первого велосипедиста, а у- скорость второго велосипедиста, тогда час
Поскольку каждый велосипедист проехал расстояние от А до B, тогда каждый из них проехал S, а значит на все расстояние от A до В было затрачено часа.
После этого у них была стоянка 2 часа, и они выехали обратно, время до встречи нам уже известно 1 час, значит
2+2+1=5 часов времени они потратили до второй встречи
Проверим закон Кеплера на планете Земля.
Принято, что расстояние от планета Земля до планеты Солнце равно 1 астрономическая единица (а. е.) и также считают, что Солнце - центр нашей планетарной системы, следовательно оно относительно нас недвижимо и формула (Тз/Тс)²=(Аз/Ас)³ превращается в формулу (Тз/1)²=(Аз/1)³ ⇒ (Тз)²=(Аз)³ ⇒ Тз=√(Аз)³.
Так как на планете Земля Аз (период вращения вокруг планеты Солнце) 1 а. е. ⇒ Тз=√1³=1, то есть ≈365 земных дней.
Теперь можно вычислить "звёздный период вращения планеты Марс" вокруг планеты Солнце:
Тм=√(1,5)³≈1,837 земного года≈1,837*365≈671 земной день.