Пусть длина наименьшей стороны клумбы х м, т.к. вторая сторона длиннее на 5м, то её длина составит (х+5)м. Вокруг клумбы идёт дорожка шириной 1 м, значит длина стороны дорожки составит (1+х+5+1)=(х+7)м - широкая сторона, и меньшая сторона составит (1+х+1)м=(х+2)м. Площадь дорожки составляет 26м² и складывается из площади 4-ч прямоугольников, из которых стороны двух длинных прямоугольников равны по (х+7)м и 1м. Площадь этих прямоугольников равна и составляет S1.2=1×(х+7)м, и 2 прямоугольника со сторонами 1м и (х+2)м, и площади их равны 1×(х+2)м=(х+2)м. Вся площадь дорожки составит 2×(х+7)+2×(х+2)=26. Делим обе части уравнения на 2, получаем:
(х+7)+(х+2)=13
2х+9=13
2х=13-9
2х=4
х=2
Таким образом, наименьшая сторона клумбы равна 2м, тогда наибольшая 2+5=7м.
Переписывая уравнение в виде y=-(x-2)²+3=-x²+4x-1, замечаем, что график представляет собой квадратическую параболу. Так как коэффициент при x² равен -1<0, то ветви параболы направлены вниз. Первый член -(x-2)² обращается в 0 лишь при x=2, а пи других значениях х он отрицателен. Поэтому точка x=2 является вершиной параболы, в которой функция достигает своего наибольшего значения Ymax=y(2)=-2²+4*2-1=3. То есть координаты вершины есть (2;3). Чтобы найти координаты точек пересечения параболы с осью ОХ, надо решить уравнение x²-4x+1=0. Находим дискриминант D=(-4)²-4*1*1=12=(2√3)². Тогда x1=(4+2√3)/2=2+√3, x2=(4-2√3)/2=2-√3. Значит, (2+√3;0) и (2-√3;0) - координаты точек пересечения параболы с осью ОХ. Отсюда ясно, что если с>3, то прямая y=c не пересекает параболу, при c=3 прямая y=3 имеет с параболой одну общую точку - вершину параболы. А при c<3 прямая пересекает параболу в 2 точках. ответ: при c<3.
(21mn²-9mn-15m-28n²+12n+20)+(28n²-12n-12-21mn²+9mn+9m) = 8-6x
21mn²-9mn-15m-28n²+12n+20+28n²-12n-12-21mn²+9mn+9m = 8-6x
-15m+20-12+9m-8=6x
-6m+20-20=6x
-6m=6x |:6
-m=x