1) любые 2) любые 5) x ∈ (-∞;-6) ∪ (-6;6) ∪ (6;+∞) 6) любые 9) x ∈ (-∞;-5) ∪ (-5;+∞) 10) с ∈ (-∞;-4) ∪ (-4;3) ∪ (3;+∞)
Объяснение:
Дробь имеет смысл, если знаменатель не равен нулю.
Значит задача состоит в том, что мы должны найти значения икса, при которых знаменатель обращается в нуль.
1) знаменатель = 1 -> имеет смысл всегда
2) знаменатель = 7 -> имеет смысл всегда
5) x^2 - 36 = 0
x^2 = 36
x = +6 ; -6;
при x = +6 и x = -6 выражение не имеет смысл.
6) x^6 + 1 = 0
x^6 = -1
степень 6 кратна двум, это значит, что любое число (даже отрицательное) в итоге будет ≥ 0.
Например (-1)^2 = 1.
9) x^2 + 10x + 25 = 0
формула дискриминанта: D = b^2 - 4ac.
D = 10^2 - 4*1*25 = 100 - 100 = 0
D = 0 => x = (-b)/2 = -10/2 = -5
При x = -5 выражение не имеет смысла.
10) выражение, очевидно, не имеет смысла при c - 3 =0 и с + 4 = 0
с = 3 и с = -4.
Рассмотрим вертикальные линии и горизонтальные. Каждую из них диагональ пересекает ровно один раз. При этом каждое пересечение вертикальной или горизонтальной линии соответствует пересечению двух (соседних) клеток. Посчитаем сумму вертикальных () и горизонтальных клеток (
): каждая клетка, которую пересекают (кроме двух крайних), считается дважды (она дважды участвует в паре), но также каждое пересечение считается дважды. Поэтому
есть количество пересеченных клеток (мы добавили двойку в числителе вот почему: 2(v+h) - это удвоенное количество средних клеток (т.е. не крайних), а крайние посчитаны только один раз. Добавляя 2, мы считаем и крайние два раза. Теперь все клетки посчитаны дважды — можем делить на 2)
Пусть дан прямоугольник , причем числа
не имеют общих делителей (иначе какая-то клетка пересекалась бы по вершине — мы ее не считали). Тогда
,
. Получаем
пересеченная клетка. Поскольку числа 239 и 566 не имеют общих делителей, к ним применима эта формула. Получаем, что диагональ пересекает 239+566-1=804 клетки
ОДЗ: 8x²+x>0 x*(8x+1)>0 -∞___+___-1/8___-___0___+___+∞
x∈(-∞;-1/8)U(0;+∞) x>0 ⇒ x∈(0;∞).
log₃(8x²+x)>2+log₃x²+log₃x
log₃(8x²+x)>log₃9+log₃x²+log₃x
log₃(8x²+x)>log₃(9*x²*x)
log₃(8x²+x)>log₃(9x³)
8x²+x>9x³
9x³-8x²-x<0
x*(9x²-8x-1)<0
9x²-8x-1=0 D=100
x₁=1 x₂=-1/9 ⇒
x*(x+1/9)*(x-1)<0
-∞___-___-1/9___+___0___-___1___+___+∞
x∈(-∞;-1/9)U(0;1).
Учитывая ОДЗ x∈(0;1).
ответ: х∈(0;1).