f(x) = ( x - 5 ) / ( x² + x - 6 )
Знаменатель дроби не может равняться нулю, значит для любого числа из области определения данной функции должно выполняться условие:
x² + x - 6 ≠ 0
Решим соответствующее квадратное уравнение и узнаем, при каких значениях x, знаменатель дроби равен нулю:
x² + x - 6 = 0
D = 1 + 24 = 25
x₁ = ( - 1 - 5 ) / 2 = - 6 / 2 = - 3
x₂ = (- 1 + 5) / 2 = 4 / 2 = 2
Корни этого уравнения нам говорят о том, что эти числа не подходят к условие, так как при таких значениях x знаменатель принимает значение 0, а значит они не входят в область определения функции.
Область определения функции - все числа кроме - 3 и 2.
Математически это записывается так:
x ∈ ( - ∞ ; - 3 ) ∪ ( - 3 ; 2 ) ∪ ( 2 ; + ∞ ).
Начнем с ОДЗ:
3x+6 > 0 => x > -2
2x - 4 > 0 => x > 2. Общее ОДЗ: x>3
2x - 6 > 0 => x > 3
Представим 2, как log1/2 (1/4), чтобы было удобнее считать. Далее применяем свойства суммы и разности логарифмов, и неравенство сводится к обычному дробно-рациональному. И не забываем поменять знак на противоположный, потому что основание логарифма меньше 1.
log1/2 ( (3x+6)/(2x-4) ) < log1/2 ( 1/4*(2x-6) )
log1/2 t - убывающая функция, а значит знак меняем.
(3x+6)/(2x-4) > x/2 - 6/4
(3x + 6 -x² + 2x + 3x -6) / 2(x-2) > 0
x(8 - x) / 2(x-2) > 0
Решение этого неравенства будет x ∈ ( - ∞; 0) ∪ ( 2; 8)
Из ОДЗ следует, что х>3, то ответ будет: x ∈ ( 3; 8)
ответ: (3; 8)