Для этого надо приравнять функции, найти х, подставить значение х в любую из функций, найти у и записать в виде (х;у). Это и будет нашим ответом: -38х+15=-21х-36 17х=51 х=3 Подставим значение х, например, во вторую функцию: у=-21х-36=-21*3-36=-63-36=-99. ответ: точка пересечения графиков у=-38х+15 и у=-21х-36- это (3;-99). УДАЧИ ВАМ ВО ВСЁМ)))!
(x-a)(x²-10x+9)=0 (x-a)(x-1)(x-9)=0 x₁=a; x₂=1; x₃=9 - корни уравнения составим из полученных корней все возможные последовательности: 1) 1, 9, а 2) 1, а, 9 3) а, 1, 9 4) а, 9, 1 5) 9, а, 1 6) 9, 1, а получено 6 последовательностей. убираем убывающие (4), (5), (6). получили три возрастающих последовательности. известно, что это арифметические прогрессии. находим значение а в каждой из них: 1) 1, 9, а d=9-1=8 => a=9+8=17 2) 1, a, 9 a=(1+9)/2=10/2=5 3) a, 1, 9 d=9-1=8 a=1-8=-7 итак, а равны 17, 5 и -7 x²-10x+9=0 корни уравнения находим по теореме виета: x₁*x₂=9 и x₁+x₂=10 => x₁=1, x₂=9 (x₁< x₂)
Х яблок у Володи ух яблок у Пети у²х яблок у Коли После раздачи стало: х+4 яблок у Володи ух-2 яблок у Пети у²х-2 яблок у Коли Эти числа и составляют арифметическую прогрессию: 1) если (ух-2) среднее число в арифметической прогрессии х+4+у²х-2=2(ух-2) (сумма наибольшего и наименьшего равна удвоенному среднему) у²х-2ух+х=-6 х(у²-2у+1)=-6, что невозможно 2) если (у²х-2) среднее число в арифметической прогрессии х+4+ух-2=2(у²х-2) 2у²х-ух-х=6 х(2у²-у-1)=6 2у²-у-1=6, но в этом случае нет целых корней 3) если (х+4) – среднее число в арифметической прогрессии ух-2+у²х-2=2(х+4) у²х+ух-2х=12 х(у²+у-2)=12 Т.к. у≥2, то у²+у-2≥4 (и является делителем числа 12) Пусть у=2, тогда х=3, а значит число яблок 3, 6 и 12 Либо у²+у-2=6 или у²+у-2=12, но в этом случае нет целых корней Следовательно у Володи 3 яблока, у Пети – 6 яблок, у Коли – 12 яблок. Всего 3+6+12=21 яблоко ответ: 21
-38х+15=-21х-36
17х=51
х=3
Подставим значение х, например, во вторую функцию:
у=-21х-36=-21*3-36=-63-36=-99.
ответ: точка пересечения графиков у=-38х+15 и у=-21х-36- это (3;-99).
УДАЧИ ВАМ ВО ВСЁМ)))!