Обозначим x,y,z длины каждого из отрезков.
Тогда:
x=0,25*y (отрезок х в 4 раза меньше чем отрезок у)
x=z+1 (отрезок х на 1 см больше чем отрезок z)
x+y+z=35
Объединяем все условия в одно и получаем систему:
Немного преобразуем ее и получим:
Подставим получившиеся выражения для y,z в последнее уравнение и получим:
x+4x+x-1=35
6x=36
x=6
Теперь найдем y и z
Получаем:
y=4*6=24
z=6-1=5
Получили решение: x=6, y=24, z=5
Теперь проверим соответсвует ли найденное решение нашим условиям:
(это надо просто устно сделать)
Действительно длина одного из отрезков (в данном случае х) в 4 раза меньше длиный другого (в данном случае у) и на 1 больше чем длина третьего (в данном случае z)
В сумме их длины дают 35 (6+24+5=35)
Значит решили верно
Длина первого отрезка = 6
Длина второго отрезка = 24
Длина третьего отрезка = 5
Обозначим x,y,z длины каждого из отрезков.
Тогда:
x=0,25*y (отрезок х в 4 раза меньше чем отрезок у)
x=z+1 (отрезок х на 1 см больше чем отрезок z)
x+y+z=35
Объединяем все условия в одно и получаем систему:
Немного преобразуем ее и получим:
Подставим получившиеся выражения для y,z в последнее уравнение и получим:
x+4x+x-1=35
6x=36
x=6
Теперь найдем y и z
Получаем:
y=4*6=24
z=6-1=5
Получили решение: x=6, y=24, z=5
Теперь проверим соответсвует ли найденное решение нашим условиям:
(это надо просто устно сделать)
Действительно длина одного из отрезков (в данном случае х) в 4 раза меньше длиный другого (в данном случае у) и на 1 больше чем длина третьего (в данном случае z)
В сумме их длины дают 35 (6+24+5=35)
Значит решили верно
Длина первого отрезка = 6
Длина второго отрезка = 24
Длина третьего отрезка = 5
х^2+10х=0
x(x+10) = 0
x=0 или х=-10
2) х^2-9=0
х=3 или х=-3
3) -х^2-4=0
х^2=4
х=2 или х = -2
4) -х^2-81=0
х^2=-81
нет корней
5)х^2-12=0
х^2=12
х=2√3 или х = -2√3
6) 36-х^2=0
х^2=36
х=6 или х = -6
7)-2х^2=0
х=0
8)х^2-10=0
х=√10 или х = -√10