М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
stanislavovichs
stanislavovichs
22.10.2021 16:25 •  Алгебра

Докажите, что сумма двух четных функций являються четной на общей области определения

👇
Ответ:
wfew
wfew
22.10.2021
Г(х)=ф(х)+п(х)
ф(х)=ф(-х) и п(х)=п(-х)
Значит  г(х)=ф(х)+п(х)=ф(-х)+п(-х)=г(-х)
4,7(10 оценок)
Открыть все ответы
Ответ:
GreenDiamonds
GreenDiamonds
22.10.2021
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения[⇨], системы линейных уравнений[⇨], среди основных инструментов, используемых в линейной алгебре — определители, матрицы[⇨], сопряжение. Теория инвариантов[en] и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры[1]. Такие объекты как квадратичные и билинейные формы[⇨], тензоры[⇨] и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Линейная алгебра обобщена средствами общей алгебры, в частности, современное определение линейного (векторного) пространства[⇨] опирается исключительно на абстрактные структуры, а многие результаты линейной алгебры обобщены на произвольные модули над кольцом. Более того, методы линейной алгебры широко используются и в других разделах общей алгебры, в частности, нередко применяется такой приём, как сведение абстрактных структур к линейным и изучение их относительно простыми и хорошо проработанными средствами линейной алгебры, так, например, реализуется в теории представлений групп[⇨]. Функциональный анализ возник как применение методов математического анализа и линейной алгебры к бесконечномерным линейным пространствам, и во многом базируется на методах линейной алгебры и в дальнейших своих обобщениях. Также линейная алгебра нашла широкое применение в многочисленных приложениях (в том числе, в линейном программировании[⇨], в эконометрике[⇨]) и естественных науках (например, в квантовой механике[⇨]).
4,8(81 оценок)
Ответ:
maksboris2002
maksboris2002
22.10.2021
Коэффицие́нт (от лат. co(cum) — «совместно» и лат. efficients — «производящий») — числовоймножитель при буквенном выражении, известный множитель при той или иной степенинеизвестного, или постоянный множитель при переменной величине.

Например, в выражении

a1x1 + a2x2 + a3x3 + …

a1 — коэффициент при переменной x1 и т. д.

В многочлене

P(x) = anxn + an − 1xn − 1 + … + a1x1 + a0.

ai — коэффициент при i-ой степени переменной x.

Коэффициентами также называют различные величины во многих отраслях точных наук, как правило, безразмерные.
4,6(85 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ