1) Заполните таблицу 2) у скольких хозяйств урожайность зерновых составила не более A) 16ц/га B) 25ц/га 3) у скольких хозяйств урожайность зерновых была наибольшей,наименьшей? 4) какова урожайность большинства хозяйств?
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимум функции в точке: x_{2} = -4 Максимум функции в точке: x_{2} = 4. Где производная положительна - функция возрастает, где отрицательна - там убывает. Возрастает на промежутках [-4, 4] Убывает на промежутках (-oo, -4] U [4, oo)
6. Найдем точки перегибов, для этого надо решить уравнение
7. Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках
Пусть x (км/ч) - рейсовая скорость автобуса, тогда (x+8) - скорость автобуса в режиме экспресса. Пусть S - длина маршрутного пути Тогда t1=S/x (1) t1 - время, которое затрачивает автобус в обычном режиме При этом время t2, затраченное автобусом в режиме экспресса, равно: t2=S/(x+8)(2) По условию t2=t1-4/60=t1- 1/15, поэтому (2) примет вид: t1=1/15 +S/(x+8)(3) Левые части (1) и (3) равны, а, значит, равны их правые части: 1/15 + S/(x+8) = S/x, или S[1/x - 1/(x+8)]=1/15, или S*[(x+8-x)/(x(x+8))]=1/15, или 8*15*S=x(x+8), или 120*S=(x^2)+8x, S=16 км по условию, поэтому имеем: (x^2) + 8x - 16*120=0(4) Найдем дискриминант D=8*8-4*(-16)*120=64+64*120=64*121=(8*11)^2=(88)^2 Поскольку D > 0, то уравнение (4) имеет два различных действительных корня: x1=(-8+88)/2 = 40 км/ч x2=(-8-88)/2 = -48 км/ч не имеет смысла, т. к. x > 0 Таким образом, рейсовая скорость x=x1=40 км/ч Подставим (2) вместо x его найденное значение, найдем искомое время t2: t2=S/(x+8) =16/(40+8) ч = 16/48 ч = (1/3) ч = (60/3) минут = 20 минут
Исследовать функцию f (x) = 11x/(16+x²) и построить ее график.
1. Область определения функции - вся числовая ось, так как знаменатель не может быть равен нулю.
2. Функция f (x) = 11x/(16+x²) непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
f(–x) = 11*(–x)/(16+(–x)²) = –11x(16+x²) ≠ f(x)
f(–x) = 11*(–x)/(16+(–x)²) = –(11x(16+x²)) = –f(x)
Функция является четной. Функция непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, 11x/(16+x²) = 0 ⇒ x=0. Значит (0;0) - точка пересечения с осью Ox.
Oy: x = 0 ⇒ y = 0. Значит (0;0) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
Находим производную заданной функции.f′(x)=(11⋅x/(16+x²))′=((11⋅x)′⋅(16+x²)−11⋅x⋅(16+x²)′)/(16+x²)²=(11⋅(16+x²)−11⋅x⋅(x²)′)(16+x²)²=((11⋅(16+x²)−22⋅x⋅x)/(16+x²)².
ответ:f′(x)=(11⋅(16+x²)−22⋅x²)(16+x²)² = (11(16-x²))/(16+x²)².
Приравниваем её нулю (достаточно числитель):
11(16-х²) = 0, 16 = х², х = +-4.
x = 4, x = -4 критические точки.
Интервалы возрастания и убывания функции:Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимум функции в точке:
x_{2} = -4
Максимум функции в точке: x_{2} = 4.
Где производная положительна - функция возрастает, где отрицательна - там убывает.
Возрастает на промежутках [-4, 4]
Убывает на промежутках (-oo, -4] U [4, oo)
6. Найдем точки перегибов, для этого надо решить уравнение
\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
[-4*sqrt(3), 0] U [4*sqrt(3), oo)(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
\frac{22 x}{\left(x^{2} + 16\right)^{2}} \left(\frac{4 x^{2}}{x^{2} + 16} - 3\right) = 0
Решаем это уравнение
Корни этого уравнения
x_{1} = 0
x_{2} = - 4 \sqrt{3}
x_{3} = 4 \sqrt{3}
7. Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
Выпуклая на промежутках
(-oo, -4*sqrt(3)] U [0, 4*sqrt(3)]8. Искомый график функции дан в приложении.