М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Roost11
Roost11
01.03.2022 02:55 •  Алгебра

Решите систему логарифмических неравенств

👇
Ответ:
uapavlovaoy4dah
uapavlovaoy4dah
01.03.2022

это "обманка"

задача "на внимание"

в обоих неравенствах слева стоят квадраты - они всегда больше равны 0

значит в первом неравенстве справа x - 3 >= 0 x>=3

во втором неравенстве 3 - x >= 0  x<=3

Значит решение может быть только x=3

надо проверить логарифмы - устраивает это или нет (так как других решений не может быть)

надо чтобы тело логарифма равнялась 1, тогда сам логарифм = 0

x^2 + 4x - 20 = 3^2 + 4*3 - 20 = 9 + 12 - 20 = 21 - 20 = 1

x^2 + 2x - 14 = 3^2 + 2*3 - 14 = 9 + 6 - 14 =  15 - 14 = 1

да оба логарифма = 0 и правые части = 0 при х=3

ответ х=3  

4,6(50 оценок)
Открыть все ответы
Ответ:
лулу36
лулу36
01.03.2022
1)
База индукции: 1

a_1=a_1+d*0=a_1 проверено.

Предположим, что утверждение верно для n=k.
a_{k}=a_1+d(k-1)=a_1+dk-d
Покажем, и докажем, что утверждение верно так же для n=k+1.
a_{k+1}=a_1+d[(k+1)-1]=a_1+dk
Так как , следуя предположению a_{k}=a_1+d(k-1)=a_1+dk-d то прибавив к данному выражению d. Мы получим  следующий член a_{k+1}=a_1+d[(k+1)-1]=a_1+dk.
Т.е. предположение верно. Ч.Т.Д.

2)
S_n= \frac{n[2a_1+d(n-1)]}{2}
База : 1
Проверка: S_1= \frac{2a_1}{2}=a_1

Предположение: n=k \Rightarrow S_k= \frac{k[2a_1+d(k-1)]}{2}= \frac{2a_1k+dk^2-dk}{2}

Теперь покажем и докажем, что данное выражение верно и при n=k+1:

Так как предыдущий член был равен k, то что бы узнать сумму первых k+1 членов, достаточно прибавить  k+1 член (используя формулу которую мы доказали ранее):
S_{k+1}= \frac{2a_1k+dk^2-dk}{2}+(a_1+dk)= \frac{2(a_1+dk)+2a_1k+dk^2-dk}{2}\\= \frac{2a_1+2dk+2a_1k+dk^2-dk}{2}= \frac{2a_1k+2a_1+dk^2+dk}{2}\\&#10;= \frac{2a_1(k+1)+dk(k+1)}{2}= \frac{(k+1)(2a_1+dk)}{2}
т.е. мы пришли к изначальной формуле, если туда подставить k+1. Ч.Т.Д.

3)
Это не формула общего члена, это формула суммы.
При 
q=1 получается деление на ноль, поэтому сразу пишем q \neq 1
База: 1
b_1= \frac{b_1(1-q)}{(1-q)}=b_1
Предположим, что формула верна для: n=k
Покажем и докажем что формула верна для n=k+1:
Как и с суммой арифм.прогрессии. Мы добавим k+1 член к сумме.
b_{k+1}= \frac{b_1(1-q^k)}{1-q}+b_1q^k= \frac{(1-q)b_1q^k+b_1(1-q^k)}{1-q}\\= \frac{b_1[(1-q)q^k+(1-q^k)]}{1-q}= \frac{b_1[q^k-q^{k+1}+1-q^k]}{1-q}= \frac{b_1(1-q^{k+1})}{1-q}
Ч.Т.Д.
4,4(66 оценок)
Ответ:
elektroo67
elektroo67
01.03.2022
Что представляет из себя функция ? 
Это сумма постоянной величины  А=(6+(7√3)/2+7pi/2), c  -7cosx , принимающей значения от -7 до +7, и прямой -3,5х , принимающей значения  от +∞ до -∞ на всей числовой оси, ясно, что предел функции
при х→ +∞ будет -∞ , но убывает она не монотонно ,а колеблясь вокруг
убывающей прямой , поэтому нельзя с уверенность сказать, что в данном замкнутом отрезке значение y(7pi/2) будет минимальным.
Поэтому  будем брать производную , приравняем ее к 0 , найдем 
экстремумы на данном отрезке и тогда уже сделаем вывод.
Дальше я буду писать на листочке и прикреплю его.

Найдите наименьшее значение функции: у= 6+ 7корнейиз3/2 +7пи/2 -7*cosx -3,5x на промежутке(закрытый
4,8(28 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ