М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Rkkshv
Rkkshv
29.01.2020 06:30 •  Алгебра

Найдите точку минимума функции y-? y=2x*ln x

👇
Ответ:
lugmar3
lugmar3
29.01.2020
Надо найти точки, где производная равна нулю или не существует.
Х определен на всех положительных числах. Производная существует по соответственным теоремам об арифметических действиях. 

Имеем: 
y' = 2lnx+2
2lnx+2=0
lnx+1=0
lnx=-1
Итого, x = e^{-1} = \frac{1}{e}

Так как e = 2.7182. то возьмем числа  \frac{1}{10} и 1 и подставим их в уравнение производной.
y'( \frac{1}{10}) = 2ln \frac{1}{10}+2 - это явно меньше нуля, так как логарифм меньше единицы резко стремится к нулю. 
Далее: y'(1) = 2ln 1+2 - это выражение больше нуля. 
Итого, точка \frac{1}{e} - точка минимума
4,5(53 оценок)
Открыть все ответы
Ответ:
AMORVL
AMORVL
29.01.2020

Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.

Такие уравнения решаются разложением левой части уравнения на множители.

\[a{x^2} + bx = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (ax + b) = 0\]

Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

\[x = 0;ax + b = 0\]

Второе уравнение — линейное. Решаем его:

\[ax = - b\_\_\_\left| {:a} \right.\]

\[x = - \frac{b}{a}\]

Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.

Примеры.

\[1){x^2} + 18x = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (x + 18) = 0\]

ДОЛЖНО БЫТЬ ПРАВИЛЬНО

4,4(78 оценок)
Ответ:
Ізабель
Ізабель
29.01.2020
Исходное число должно быть четырехзначным.
Пусть исходное число будет ABCD=1000A+100B+10C+D.
Из четырехзначного числа ABCD вычли сумму его цифр и получили 2016:
1000A+100B+10C+D-(А+В+С+D)=2016
Раскроим скобки и решим:
1000A+100B+10C+D-А-В-С-D=2016
999А+99В+9С=2016
Сократим на 9:
111А+11В+С=224
Очевидно, что 1<А>3, т.е. А=2 (2000).
111*2+11В+С=224
 222+11В+С=224
11В+С=224-222
11В+С=2
С=2-11В, где С и В – натуральные положительные числа от 0 до 9. При значениях В от 1 до 9, С – отрицательное число.
Значит В=0, тогда С=2-11*0=2
Получаем число 202D, где D - натуральное положительное число от 0 до 9, т.е. возможные исходные значения от 2020 до 2029.
9 – максимальное значение D, значит наибольшее возможное исходное значение 2029.
Проверим: 2029 – (2+2+0+9)=2029-13=2016
ответ: наибольшее возможное исходное значение число 2029
4,6(39 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ