М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
minzer
minzer
24.02.2023 11:07 •  Алгебра

Представьте многочлен в виде квадрата суммы или разности: 0,49a^2-2,52a+3,24

👇
Ответ:
emil132
emil132
24.02.2023
0,49a^2-2,52a+3,24=(0,7a)^2-2*0,7*1,8*a+(1,8)^2=
(0,7a-1,8)^2
4,7(13 оценок)
Открыть все ответы
Ответ:
Xonus
Xonus
24.02.2023

2. Исследуем функцию на монотонность и на экстремум:

Критические точки функции:

,

,

Определим знак производной в каждом интервале монотонности:

, точка max, так как производная  изменила знак с "+" на "−",

, точка min, так как производная  изменила знак с "−" на "+".

Вычислим сам экстремум функции в этих точках:

3. Исследуем функцию на выпуклость, вогнутость кривой и перегиб:

Критические точки: , , ,  

Определим знак II производной в интервале кривизны:

, значит, кривая выпуклая на промежутке,

, значит, кривая вогнутая на промежутке;

Вычислим ординату точки перегиба:

4. Найдём дополнительные точки графика:

По результатам исследования строим график функции:

Пример 2. Исследовать функцию по первой и второй производной и построить её график:  .

1. Область определения функции ,

точка разрыва, чтобы определить её характер, найдём правосторонний и левосторонний пределы функции в этой точке:

Значит,  точка разрыва рода,

прямая  вертикальная асимптота графика функции.

Найдём наклонную асимптоту графика:

где угловой коэффициент прямой найдём по формуле

Так как  существует, то есть и наклонная асимптота. Вычисляем коэффициент b:

Значит, наклонная асимптота графика имеет уравнение .

2. Исследуем функцию на монотонность и на экстремум:

, учтем правило дифференцирования  

Критические точки функции:

,  , , , х=2,

4,6(47 оценок)
Ответ:
Tomilka777
Tomilka777
24.02.2023
1)    ;
sin2x - (1-sin²x)  =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.

2)   ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0  * * *cos2x = ± 1 ≠0→ ОДЗ * * * 
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .

3)   ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.

4)  ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ;  * * * α = 3x  * * *
cos3x = 2cos²3x ; 
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.
4,4(56 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ