в порядке возростания {-5}; {0} ; {} ; {2} они разбивают числовую пряммую на пять промежутков
на которых функция задающая л.ч неравенства сохраняет знак
при єто так как у нас множители вида (x-A)^n, где n- нечетное число (а в данном случае для каждого из четырех множителей то переходе через критическую точку функция меняет знак на противоположный
найдем знак функции для какой нибудь точки з интервала напр. для 1000 (важен знак ---а не само значение)
значит знак на промежутке "+" переходим через точку {2} и получаем что на интервале знак "-" переходим через точку и получаем что на интервале знак "+" переходим через точку {0} и получаем что на интервале знак "-" переходим через точку {-5} и получаем что на интервале знак "+"
обьединяем получаем ответ:
(включительно так как знак больше РАВНО 0 --а множителей в знаменателе на исключение нет)
8. 〖64〗^х=12+8^х 8^(x + 2) = 12 + 8^x, 8^x*63 = 12, 8^x = 4/21, x = log(4) - log(21) - оба логарифма по основанию 8.
9. (32-2^х) /(х^2-8х+15)≤0 (32-2^x)/((x-3) * (x-5)) ≤ 0, Возможны случаи: 1) числитель равен 0. Тогда x = 5. Но тогда знаменатель тоже равен 0. ответ не принимается. 2) числитель больше 0, знаменатель меньше 0. Тогда x < 5, x > 3, x < 5 => 3 < x < 5. 3) числитель меньше 0, знаменатель больше 0. Тогда x > 5, x < 3, x > 5 => x > 5.
-4(1,5х-2)=10-5(2х+1)
-6х+8=10-10х-5
-6х+10х=-8+10-5
4х=-3
х=-3/4