Пусть x- количество лет старшего брата и он старше младшего брата на y лет . Тогда младшему брату (x-y) лет
Когда старшему брату было (x-y) лет, то младшему было (x-y)-y=x-2y лет
Из условия задачи имеем уравнение
x-y=3*(x-2y)
Когда младшему брату будет x лет, старшему будет x+y лет
Составляем второе уравнение
x+(x+y)=60
Имеем систему
x-y=3x-6y
2x+y=60
2x-5y=0
2x+y=60
Из второго уравнения вычтем первое
6y=60
y=10 - разность в годах
2x+y=60 2x=60-y=50 x=25
То есть старшему брату 25 лет, а младшему 25-10=15 лет
ответ:
а) корни: y1=(5, 0) у2=(-10, 0)
б) х=9/2 или 4 1/2 или 4,5; корни: y1=(-6, 0) у2=(15, 0)
объяснение
а) y1=(x-5)^2 область определения x ∈ r
минимум (5, 0)
пересечение с осью координат (0, 25)
y2=(x+10)^5 область определения x ∈ r
пересечение с осью координат (0, 100000)
б) (x+6)^2=(15-x)^2
√(x+6)^2=√(15-x)^2
|x+6| = |15-x|
x+6 = 15-x x+6 = -(15-x)
x+x+6 = 15 x+6 = -15+x → сокращаем иксы
x+x = 15-6 6 = -15
2x = 9 x ∈ ∅
х=9/2
y1=(x+6)^2 область определения x ∈ r
минимум (-6, 0)
пересечение с осью координат (0, 36)
y2=(15-х)^2 область определения x ∈ r
минимум (15, 0)
пересечение с осью координат (0, 225)
2 (4-y)-3y=23
8-2y-3y=23
-5y=15
y=-3
x=4-(-3)=4+3=7