Пусть в 8а учится A учеников, в 8б учится B учеников. По условию, A+B=54. Пусть ученик из 8а дружит с учеником из 8б. Тогда у них есть дружественная двусторонняя связь. Это значит, что если учащийся x из 8а дружит с учащимся y из 8б, то и учащийся y из 8б дружит с учащимся x из 8а. Если рассматривать относительно 8а, то у каждого учащегося по 4 дружественных связей, то есть всего количество этих связей равно 4A. Если рассматривать относительно 8б, то у каждого учащегося по 5 дружественных связей, то есть всего количество этих связей равно 5B. Так как, как говорилось раньше, все связи двусторонние, то 4A=5B. Отсюда следует система уравнений: A+B=54, 4A-5B=0.
4 (n+5)^2-n^2=n^2+10n+25-n^2=5(2n+5) , 5 делится на 5, 2н - это честное число при любых н, любое четное чилос делится на 5 , значит и все это выражение делится на 5 при любых н