1) 25X^2 - 75X^2 - 17X + 6 = 0
25*(5)^2 - 75*25 - 85 + 6 = 625 - 1875 - 85 + 6 = 631 - 1960 = - 1329
ОТВЕТ: число 5 НЕ ЯВЛЯЕТСЯ КОРНЕМ ДАННОГО УРАВНЕНИЯ
2) 3*(2X-7) = 6X+1
6X - 21 = 6X + 1
6X - 6X = 22
0X = 22
ОТВЕТ: КОРНЕЙ НЕТ
4) (X-1)*(X+1) = 0
X1 = 1 X2 = - 1
(X+1)^2 = 2X+2
X^2 + 2X + 1 = 2X + 2
X^2 + 2X + 1 - 2X - 2 = 0
X^2 - 1 = 0
X^2 = 1 ---> X1 = V 1 = 1 (один корень)
ОТВЕТ: НЕ ЯВЛЯЕТСЯ
|X| - 1 = 0
|X| = 1
ОТВЕТ: ЯВЛЯЕТСЯ
X^2 = 1
ОТВЕТ: ЯВЛЯЕТСЯ
(X-1) = (X+1)
Корней нет : НЕ ЯВЛЯЕТСЯ
5) 2X+3A = 5X - 6B
5X - 2X = 3A + 6B
3X = 3*(A + 2B)
X = A + 2B
3) - 24X = - 5
AX = B
48X = 10
72X = 15
Объяснение:
Найти площадь фигуры, ограниченной линиями:
у=х² +6х+12; х=-1; х=-3; у = 0
Построим указанные кривые на координатной плоскости
у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).
Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы
у(-3) = 9 - 18 + 12 = 3
у(-1) = 1 - 6 + 12 = 7
Координаты двух других точек (-3;3) и (-1;7)
Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.
Данные прямые параллельны оси абсцисс и проходят через точки (-1;0) и (-3;0) соответственно.
Прямая y=0 является осью ординат.
Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12
Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и функцией х² +6х+12
ответ: 230