Объяснение:
Разложить число на простые множители значит записать число как произведение простых чисел .
Простым числом называют натуральное число , делящееся только на себя и на единицу. Составным числом называют число, имеющее больше двух различных делителей Например, числа 2,3,5,7, – простые, а числа 6(2*3),8(2*4),9(3*3) – составные.
Число 388 , оканчивается на 8 значит делится на 2
388:2=194, оканчивается на четное , значит также делится на 2
194 :2= 97 ,вспомним признаки делимости на 3 и 9 , число делится если сумма его цифр делится на 3 или 9.На четыре делится если 2 его последние цифры нули или образуют число которое делится на 4, На пять делится если число оканчивается на 5 или 0.осталось число 6 и 8. На 6 делится если одновременно делится на 2 и 3 , и число делится на 8, если три его последние цифры - нули или образуют число, которое делится на 8.
97=9+7=16, ни на одно число не делится, кроме 1 и самого себя значит 97 это простое число.
388=2*2*97
Число 2520
2520:2= 1260 ( признак делимости на 2)
1260:2=630 ( признак делимости на 2)
630:2=315 ( признак делимости на 5)
315:5=63 ( признак делимости на 3 и 9; 6+3=9 делится и на 3 и на 9
63:3=21 (2+1=3, признак делимости на 3 )
21:3=7 ( неделимое, простое число)
2520 = 2*2*2*3*3*5*7
2) Чтобы обратить обыкновенную дробь в десятичную, нужно числитель разделить на знаменатель.
3 2/5=17/5=17:5=3,4 мы получили конечную десятичную дробь, поскольку в знаменателе обыкновенной дроби стоит 5 ( получить конечную десятичную дробь можно если знаменатель обыкновенной дроби содержит простые множители 2 и 5)
43/30=43:30=1,4 33333… = 1,4(3), поскольку знаменатель обыкновенной дроби содержит кроме 2 и 5 еще 3, то она не может быть представлена конечной десятичной дробью.
a) D(y) = [0; 1.25]
б) D(y) = (-∞; -10] U [8; 12) U (12; +∞).
Объяснение:
а) у = √(5х - 4х²)
Подкоренное выражение не должно быть отрицательным, поэтому
5х - 4х² ≥ 0
Найдём корни уравнения 5х - 4х² = 0
х(5 - 4х) = 0
х1 = 0; х2 = 1,25
Делим на интервалы и определяем знаки на интервалах. Получаем следующую картинку
- + -
0 1,25
Очевидно, что 5х - 4х² ≥ 0 при х∈[0; 1.25], поэтому область определения функции D(y) = [0; 1.25].
б) y = (√(x² + 2x - 80))/(3х - 36)
Знаменатель функции не должен быть равен нулю, поэтому
3х - 36 ≠ 0 ⇒ х ≠ 12
Подкоренное выражение не должно быть отрицательным, поэтому
x² + 2x - 80 ≥ 0
Найдём корни уравнения x² + 2x - 80 = 0
D = 4 + 320 = 324
х1 = 0,5(-2 - 18) = -10
х2 = 0,5(-2 + 18) = 8
Делим на интервалы и определяем знаки на интервалах. Получаем следующую картинку
+ - + +
-10 8 12
Очевидно, что x² + 2x - 80 ≥ 0 при х∈(-∞; -10] U [8; 12) U (12; +∞), поэтому область определения функции D(y) = (-∞; -10] U [8; 12) U (12; +∞).
0,7 гр. - x мл.
x= 20/0,5 * 0,7 = 28 мл.
ответ: 28 мл