1) 4x^2 - 12= 0
4x^2 = 12
x^2=3
x=+-3 (x= плюс минус 3)
x1 = -√3
x2 = √3
2)7x^2 + 5x= 0
x·(7x+5)=0
x=0 или 7x+5=0
x1=0 x2 = -5/7
3)x^2 - 6x - 16 = 0
x^2 + 2x - 8x - 16 = 0
x·(x+2)-8(x+2)=0
(x+2)·(x-8)=0
x+2=0 или x-8=0
x1=-2 x2=8
4)15x^2 - 4x - 3 = 0
15x^2+5x-9x-3=0
5x·(3x+1)-3·(3x+1)=0
(3x+1)·(5x-3)=0
3x+1=0 или 5x-3=0
3x=-1 5x=3
x=-1/3 x=3/5
5)x^2 - 7x + 4 = 0
D=7^2-4·1·4=49-16=33
\frac{7-\sqrt{33} }{2} https://tex.z-dn.net/?f=%5Cfrac%7B7-%5Csqrt%7B33%7D%20%7D%7B2%7D%20
x1=7-√33/2 (7-√33, а под ними черта дроби, которая делит эту разность на 2)
x2=7+√33/2
6)x^2 + 5x + 9 = 0
x=-5±√5²-4x·1·9 и разделить на 2·1
x=-5±√25-36 и разделить на 2
x=-5±√-11 и разделить на 2
дальше решить вроде нельзя(
Решение:
Разложим многочлен на множители методом выделения полного квадрата.Для применения первой формулы необходимо получить выражениеx2+ 14x + 49 = 0.Поэтому прибавим и отнимем от многочлена x2+ 14x + 45 число 4, чтобы выделить полный квадрат x 2+ 14x + 45+4−4 =0 (x 2+ 14x + 45+4)−4=0(x 2+ 14x + 49)−4=0(x+7)2−4=0Применим формулу «разность квадратов» a2−b2=(a−b)⋅(a+b) (x+7)2−22=0( x + 7 – 2 ) ( x + 7 + 2 ) = 0( x + 5 ) ( x + 9 ) = 0x + 5 = 0 x + 9 = 0x1 = – 5 x2 = – 9
ответ: –9;–5.Пример:Решить уравнение x2 − 6x − 7 = 0Решение:
Выделим в левой части полный квадрат.Для применения второй формулы необходимо получить выражение x2 − 6x +9 = 0
Поэтому запишем выражение x2 − 6x в следующем виде: x2−6x =x2−2⋅x⋅3
В полученном выражении первое слагаемое - квадрат числа x, а второе - удвоенное произведение x на 3.Чтобы получить полный квадрат, нужно прибавить 32
Итак, прибавим и отнимем в левой части уравнения 32, чтобы выделить полный квадрат.x2 − 6x − 7 = x2 − 2⋅ x ⋅3 + 32 − 32 − 7 = (x2 − 2⋅ x ⋅3 + 32 ) − 32 − 7 ==(x − 3)2 − 9 − 7 = (x − 3)2 − 16.
Подставим в уравнение и применим формулу a2−b2=(a−b)⋅(a+b).(x −3)2−16=0(x −3)2=16x −3=4x −3= −4x=3+4x = 3−4x1=7x2= −1
ответ:–1;7.