В решении.
Объяснение:
Найти корни уравнения методом подбора по теореме Виета:
а) х² - 5х - 6 = 0
По теореме Виета:
х₁ + х₂ = -р; х₁ * х₂ = q;
По условию задачи:
х₁ + х₂ = 5;
х₁ * х₂ = -6;
х₁ = 6; х₂ = -1;
Проверка:
6 - 1 = 5; 6 * (-1) = -6, верно.
b) х² - 4х + 3 = 0
По теореме Виета:
х₁ + х₂ = -р; х₁ * х₂ = q;
По условию задачи:
х₁ + х₂ = 4;
х₁ * х₂ = 3;
х₁ = 3; х₂ = 1;
Проверка:
3 + 1 = 4; 3 * 1 = 3, верно.
с) х² - 8х + 12 = 0
По теореме Виета:
х₁ + х₂ = -р; х₁ * х₂ = q;
По условию задачи:
х₁ + х₂ = 8;
х₁ * х₂ = 12;
х₁ = 6; х₂ = 2;
Проверка:
6 + 2 = 8; 6 * 2 = 12, верно.
d) х² - 6х + 8 = 0
По теореме Виета:
х₁ + х₂ = -р; х₁ * х₂ = q;
По условию задачи:
х₁ + х₂ = 6;
х₁ * х₂ = 8;
х₁ = 4; х₂ = 2;
Проверка:
4 + 2 = 6; 4 * 2 = 8, верно.
е) х² - 8х + 15 = 0
По теореме Виета:
х₁ + х₂ = -р; х₁ * х₂ = q;
По условию задачи:
х₁ + х₂ = 8;
х₁ * х₂ = 15;
х₁ = 5; х₂ = 3;
Проверка:
5 + 3 = 8; 5 * 3 = 15, верно.
f) х² - 2х - 48 = 0
По теореме Виета:
х₁ + х₂ = -р; х₁ * х₂ = q;
По условию задачи:
х₁ + х₂ = 2;
х₁ * х₂ = -48;
х₁ = 8; х₂ = -6;
Проверка:
8 - 6 = 2; 8 * (-6) = -48, верно.
Объяснение:
1)одинаковыми значками отмечены равные стороны. Значит
СО=ОД=4
Ао=ОВ=3
∠СОА=∠ВОД - вертикальные.
ΔСОА≅ΔДОВ по двум сторонам и углу между ними. значит и третьи стороны равны СА=ВД=5
5+4+3=12
ответ Р=12 см.
2)ΔАВС≅ΔСДА - по трем сторонам. СВ=ДА=6,АВ=СД=4,АС=7. Р=7+6+4=17 см.
ответ Р=17 см
3)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС) ⇒КД=МД -против равных углов в равных треугольниках лежат равные стороны
КВ=ВМ -дано,ВД -общая.(равна сама себе) . Отсюда по трем сторонам ΔКВД≅ΔМВД что и требовалось доказать.
4)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС)
Уо=-(3^2)+6*3=9 координаты вершины (3;9)