Пусть х дм - длина одного катета, тогда
(23+х) дм - длина другого катета.
37 дм - гипотенуза
ОДЗ: 0<x<37
Согласно теореме Пифагора для прямоугольного треугольника сумма квадратов катетов равна квадрату гипотенузы, получаем уравнение:
x² + (23+x)² = 37²
x² + 529 + 46x + x² = 1369
2x²+46x+529-1369 = 0
2x²+46x-840 = 0 |:2
x²+23x-420 = 0
D = 23² - 4·1·(-420) = 529+1680 = 2209 = 47²
x₁ = (-23-47)/2 = -60/2 = - 30 < 0 не удовлетворяет ОДЗ.
x₂ = (-23+47)/2 = 24/2 = 12 удовлетворяет ОДЗ.
Получаем:
12 дм - длина одного катета;
23+12 =35 дм - длина другого катета;
37 дм - гипотенуза
Найдем периметр прямоугольного треугольника:
12 + 35 + 37 = 84 (дм)
ответ: 84 дм
Х км/ч - скорость лодки, тогда cкорость лодки по течению (Х-5) км/ч, а против течения (Х+5) км/ч
Лодка по течению 48/(Х-5) часов, а против течения 48/(Х+5) часов, но т.к. она затратила на проплыв 1 час меньше, чем плот, то получаем:
48 +48 = 5 - 1
Х-5 Х+5
48*(Х+5) + 48*(Х-5) = 4*(Х-5)(Х+5)
48*(Х+5+Х-5) = 4*(Х²-25)
48*2Х = 4Х² - 100
4Х² - 96Х – 100 = 0
Х² - 24Х – 25=0
Д= (-24) ² - 4*1*(-25) = 576 + 100 = 676
Х1 = -(-24)+√676 = 24+26 = 50 = 25 (км/ч)
2*1 2 2
Х2 = -(-24)-√676 = 24-26 = -2 = -1
2*1 2 2
ответ: скорость моторной лодки в неподвижной воде = 25 км/ч