Сделаем замену |x| = y, тогда x^2 = |x|^2 = y^2. Получаем уравнение: y^2 - 6y + 5 - a = 0, D/4 = 3^2 - (5-a) = 9 - 5 + a = 4+a, Если D/4 <0, то решений нет. Если D/4 = 0, то единственное решение квадратного уравнения y=A, <=> |x|=A, не более двух корней (поэтому эти значения отметаем). D/4 >0, <=> 4+a>0, <=> a>-4. Тогда квадратное уравнение имеет два корня. y1 = 3-(√a+4), y2 = 3+(√a+4), Видим, что y2 = 3+(√a+4)>=3>0, и уравнение |x|=y2 имеет два корня. Уравнение же |x|=y1 = 3-(√a+4) может не иметь корней, иметь один корень (тот случай, который нас интересует) или два корня. |x|=y1 = 3-(√a+4) = 0, тогда один корень 3=(√a+4), 3^2= 9 = a+4, a = 9-4 = 5, Условие a = 5>-4 выполняется. При этом (a=5) Корни совпасть не могут: уравнение |x|=y2 дает отрицательный и положительный корни, а уравнение |x|=y1 дает корень равный нулю. ответ. а=5.
Скорее всего, в этом условии есть ошибка. Согласно школьной программе степенная функция с дробным показателем определена только для неотрицательных х. (см., например, учебник Мордкович А.Г., "Алгебра 10-11 и начала математического анализа. Часть 1" 14 издание, Москва 2013 г., стр. 220-221.)
Но и в текущей постановке эту задачу можно считать корректной и решить, хотя это и не так интересно. Поскольку в условии не указана конкретная точка, через которую должна проходить касательная (а сказано только, что у нее абсцисса должна быть -1), возьмем любую касательную к графику функции f(x) и на этой касательной возьмем точку с абсциссой x0=-1. f'(x)=(4/5)x^(-1/5). При х=1, f'(1)=4/5, f(1)=1. Значит уравнение касательной y=4(x-1)/5+1, т.е. y=4x/5+1/5. Очевидно, точка М(-1; -3/5) лежит на касательной. Итак, прямая c уравнением y=4x/5+1/5 является касательной к графику функции f(x)=x^(4/5) и проходит через точку M(-1;-3/5) c абсциссой -1 (хотя сама точка М не лежит на графике). Понятно, что таких точек можно найти сколько угодно, т.к. можно брать любые касательные. В такой постановке задача, конечно неинтересна. Собственно поэтому я и думаю, что в условии ошибка.
P.S. На всякий случай присоединяю скрин из учебника, в качестве подтверждения моих слов про область определения степенной функции с дробным показателем. Обратите внимание на упражнение г) и на замечание ниже.
общее решение
частное решение