Подкоренное выражение 7х - х² должно быть положительным или равным нулю, потому что извлекать квадратный корень из отрицательного числа нельзя.
7х - х² ≥ 0.
Решим неравенство методом интервалов. Найдем нули функции.
7х - х² = 0.
Вынесем за скобку общий множитель х.
х(7 - х) = 0.
Произведение двух множителей равно нулю тогда, когда один из множителей равен нулю.
1) х = 0;
2) 7 - х = 0;
х = 7.
Отметим на числовой прямой точки 0 и 7.
Эти числа делят числовую прямую на интервалы 1) (-∞; 0], 2) [0; 7], 3) [7; +∞).
Выясним, на каком из интервалов выражение 7х - х² будет принимать положительные значения. На 1 и 3 интервалах это выражение отрицательно, на 2 итервале - положительно. Поэтому, значения х, принадлежащие 2 интервалу являются областью определения функции.
ответ. [0; 7].
D (-∞;+∞)
y(-x)= (-x)^4-2(-x)^2-3 - четная
OX: y=0
x^4 - 2x^2 -3=0
x^2(x^2-2)=3
x^2=3 или x^2-2=3
x=sqrt(3) x=sqrt(5)
OY: x=0 y=-3
Находим критические точки.
y'(x)= 4x^3-4x
4x^3-4x=0
4x(x^2-1)=0
x=0 x=±1
Далее стоим числовую прямую и наносим на нее -1:0:1
Находим промежутки возростания и убывания функции.
Находим Xmin и Xmax, подставляем в функцию и находим Ymax, Ymin.
Далее стоим график. Наносим точки пересечения с осями и критические точки.
..........................................