1)) Решение:
1. Обозначим: x – первое неизвестное число, y – второе неизвестное число.
2. По условию задачи была составлена система уравнений:
x^2 – y^2 = 6;
(x - 2)^2 – (y - 2)^2 = 18;
1. Преобразуем второе уравнение:
x^2 – 4x + 4 – (y^2 – 4y + 4) = 18;
x^2 – 4x + 4 – y^2 + 4y – 4 = 18;
x^2 – y^2 + 4y – 4x = 18;
Подставим первое уравнение: 6 + 4y – 4x = 18;
4y – 4x = 18 – 6;
4(y – x) = 12;
y – x = 12 / 4;
y – x = 3;
y = 3 + x;
1. Система равнений приобрела следующий вид:
y = 3 + x;
x^2 – y^2 = 6;
1. Подставим первое уравнение во второе:
x^2 – (3 + x)^2 = 6;
x^2 – (9 + 6x + x^2) = 6;
x^2 – 9 – 6x – x^2 = 6;
-6x = 6 + 9;
-6x = 15;
x = 15 / (-6);
x = -2,5;
Если x = -2,5, то y = 3 + x = 3 – 2,5 = 0,5;
Найдём сумму: -2,5 + 0,5 = -2.
ответ: сумма чисел равна -2.
1)) Решение:
1. Обозначим: x – первое неизвестное число, y – второе неизвестное число.
2. По условию задачи была составлена система уравнений:
x^2 – y^2 = 6;
(x - 2)^2 – (y - 2)^2 = 18;
1. Преобразуем второе уравнение:
x^2 – 4x + 4 – (y^2 – 4y + 4) = 18;
x^2 – 4x + 4 – y^2 + 4y – 4 = 18;
x^2 – y^2 + 4y – 4x = 18;
Подставим первое уравнение: 6 + 4y – 4x = 18;
4y – 4x = 18 – 6;
4(y – x) = 12;
y – x = 12 / 4;
y – x = 3;
y = 3 + x;
1. Система равнений приобрела следующий вид:
y = 3 + x;
x^2 – y^2 = 6;
1. Подставим первое уравнение во второе:
x^2 – (3 + x)^2 = 6;
x^2 – (9 + 6x + x^2) = 6;
x^2 – 9 – 6x – x^2 = 6;
-6x = 6 + 9;
-6x = 15;
x = 15 / (-6);
x = -2,5;
Если x = -2,5, то y = 3 + x = 3 – 2,5 = 0,5;
Найдём сумму: -2,5 + 0,5 = -2.
ответ: сумма чисел равна -2.
y'=0; x² - 4x - 45 = 0
x² - 4x + 4 = 49
(x-2)² = 49
x-2 = ±7
x1 = 9
x2 = -5
___+(-5)___-(9)___+
В точке х=-5 функция меняет знак с (+) на (-), а в точке х=9 с (-) на (+). Следовательно, х=-5 - локальный максимум. х=9 - локальный минимум