М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Диарочка1
Диарочка1
25.11.2022 02:50 •  Алгебра

Найти производную функции: 1) у=3х²/х-4 2)у=✓х*sinx 3)y=5/x-3✓x+4x² , если можно подробно .

👇
Ответ:
AlinaElsukova
AlinaElsukova
25.11.2022
1)\; \; y= \frac{3x^2}{x-4} \\\\y'= \frac{(3x^2)'(x-4)-3x^2(x-4)'}{(x-4)^2}=\frac{6x(x-4)-3x^2}{(x-4)^2}\\\\2)\; \; y= \sqrt{x} \cdot sinx\\\\y'=( \sqrt{x} )'sinx+ \sqrt{x} (sinx)'= \frac{1}{2\sqrt{x} } \cdot sinx+ \sqrt{x} \cdot cisx\\\\3)\; \; y= \frac{5}{x}-3 \sqrt{x}+4x^2\\\\y'=5(x^{-1})'-3( \sqrt{x} )'+4(x^2)'=- \frac{5}{x^2}-\frac{3}{2 \sqrt{x}}+8x
4,6(52 оценок)
Открыть все ответы
Ответ:
nactya201613
nactya201613
25.11.2022

Объяснение:

Задание 1

\displaystyle \left \{ {{y=4-x} \atop {x^{2} +3xy=18}} \right. \\ \\

Значение у из первого уравнения подставим во второе уравнение

\displaystyle x^{2} +3x(4-x)= 18\\ \\ x^{2} +12x-3x^{2} =18\\ \\ -2x^{2} +12x-18=0 | : (-2)\\ \\ x^{2} -6x+9=0\\ \\ D= 6^{2}- 4*9= 36-36=0

Если дискриминант равен нулю , то квадратное уравнение имеет только один действительный корень, также можно сказать , что квадратное уравнение имеет два действительных корня , которые равны между собой.

x_{}= \frac{6+0}{2}= 3

y_{}= 4-3=1

Задание 2

\displaystyle \left \{ {{x^{3} - y^{3} =26} \atop {x^{2}+xy+y^{2} =13}} \right.

первое уравнение в системе это разность кубов, разложи на множители:

\displaystyle x^{3} - y^{3} = 26 \\ \\ (x-y)(x^{2} +xy+y^{2})= 26

из второго уравнения подставим значение выражения х²+ху+у²

\displaystyle 13*(x-y)= 26 \\ \\ x-y= 26 : 13\\ \\ x-y= 2 \\ \\ x= 2+y

подставим значение х во второе уравнение системы :

(2+y)^{2} +y(2+y)+y^{2} = 13\\ \\ 4+4y+y^{2} +2y+y^{2} +y^{2}= 13\\ \\ 3y^{2} +6y+4-13=0\\ \\ 3y^{2}+6y-9=0 | : 3\\ \\ y^{2}+2y-3=0\\ \\ D= 2^{2}- 4*(-3)= 4+12=16\\ \\ \sqrt{D}= 4\\ \\ y_{1}= \frac{-2+4}{2}= 1\\ \\ y_{2}= \frac{-2-4}{2} = -3

тогда

x_{1}= 2+1=3\\ \\ x_{2}= 2+(-3)= 2-3=-1

Корни уравнения ( 3 ;1) и ( -1 ; -3)

4,4(84 оценок)
Ответ:
{x>0
{x^2+x+1<1⇒x²+x<0⇒x(x+1)<0  x=0  x=-1  -1<x<0
ответ нет решения

{x^2+4x<1⇒x²+4x-1<0  (1)
{x^2+4x>-1⇒x²+4x+1>0  (2)
1)D=16+4=20
x1=(-4-2√5)/2=-2-√5 U x2=-2+√5
(-2-√5)<x<(-2+√5)
2)D=16-4=12
x1=(-4-2√3)/2=-2-√3 U x2=-2+√3
x<-2-√3 U x>-2+√3
        
--(-2-√5)(-2-√3)(-2+√3)(-2+√5)
                                       
x∈(-2-√5;-2-√3) U (-2+√3;-2+√5)

{x^2-x>0⇒x(x-1)>0  x=1  x=0    x<0 U x>1
{x^2-x<2⇒x²-x-2<0  x1+x2=1 U x1*x2=-2⇒x1=-1 U x2=2    -1<x<2
x∈(-1;0) U (1;2)

{x^2-x<0⇒x(x-1)<0    x=0  x=1    0<x<1
{-(x^2-x)<2⇒x²+x+2>0  D=1-8=-7<0⇒x-любое
x∈(0;1)
4,4(81 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ