Отрезок AB можно рассматривать как гипотенузу. Для этого представим дополнительную точку C с координатами абсциссы от точки А и ординатой точки В, это будет С(4;-2). Длина АС=8-(-2)=10, ВС=4-2=2. По теореме Пифагора AB²=AC²+BC²=10²+2²=104 АВ=√104=√4*26=2√26 Координаты середины АВ-- абсцисса равноудалена от абсцисс точек А и С это будет 3, а ордината по построению видно это тоже 3 Для определения принадлежности точек прямой подставим координаты в уравнение А(4;8)------ x-y+4=0; 4-8+4=0 равенство верное, точка принадлежит В(2;-2)----- 2-(-2)+4=0; 8=0 равенство неверное, точка не принадлежит
Пусть первое число, пропорциональное числу 1 равно х, тогда второе число, пропорциональное числу 2 равно 2х. Т.к. сумма трёх чисел равна 18,то третье число равно 18-х-2х=18-3х По условию, произведение этих трёх чисел должно принимать наибольшее значение. Применим производную для решения задачи: f(x)=x*2x*(18-3x)=2x²(18-3x)=36x²-6x³ f `(x)=(36x²-6x³)`=36*2x-6*3x²=72x-18x²=18x(4-x) f `(x)=0 при 18x(4-x)=0 - + - 04 min max ↓ ↑ ↓ x=4 2x=2*4=8 18-4-8=6
2х^2+5х-4=0
D=b^2-4ac=5^2-4(-4)•2=25+32=57>0
x1=(-5+√57)/4
x2=(-5-√57)/4
здесь полное квадрат . уравнения