 
                                                 
                                                1
a)cos 260° * sin 190°
cos 260° < 0, (260° - угол 3 четверти, где косинус отрицателен)
sin 190° < 0(190° - угол 3 четверти, где синус отрицателен).
Поэтому это выражение больше 0.
б)cos 350° * tg(-100°)
cos 350° > 0(350° - угол 4 четверти, где косинус положителен).
tg(-100°) = -tg 100° > 0(100° - угол 2 четверти, где тангенс отрицателен, да ещё минус)
Поэтому, значение выражения больше 0.
2
а)sin 230° < 0, так как 230° - угол 3 четверти, где синус отрицателен.
б)cos 170° < 0, так как 170° - угол 2 четверти, где косинус отрицателен
в)tg 330° < 0, так как 330° - угол 4 четверти, где тангенс отрицателен
г)ctg(-220°) = -ctg 220° < 0, так как само выражение ctg 220° > 0(угол относится к 3 четверти, где котангенс положителен), да ещё минус прибавили.
д)В знаменателе у нас стоит постоянное число 8, так что знак выражения будет зависеть только от числителя. Достаточно проверить лишь одно из выражений, например, cos 3:
cos(3 * 57) = cos 171° < 0, (171 - угол 2 четверти, где косинус отрицателен). Поэтому всё выражение заведомом меньше нуля
 
                                                 сумма количества цифр: 1 + 2 = 3 , количество цифр у квадрата числа вдвое больше количества цифр исходного числа.
       сумма количества цифр: 1 + 2 = 3 , количество цифр у квадрата числа вдвое больше количества цифр исходного числа. искомая сумма: 1 + 2 = 3 , количество цифр у квадрата числа всё так же вдвое больше количества цифр исходного.
       искомая сумма: 1 + 2 = 3 , количество цифр у квадрата числа всё так же вдвое больше количества цифр исходного. искомая сумма: 1 + 1 = 2 , количество цифр у квадрата равно количеству цифр исходного.
       искомая сумма: 1 + 1 = 2 , количество цифр у квадрата равно количеству цифр исходного. искомая сумма: 1 + 1 = 2 , количество у квадрата равно количеству цифр исходного.
       искомая сумма: 1 + 1 = 2 , количество у квадрата равно количеству цифр исходного. сумма: 2 + 4 = 6 , количество цифр у квадрата вдвое больше количества цифр исходного.
       сумма: 2 + 4 = 6 , количество цифр у квадрата вдвое больше количества цифр исходного. сумма: 2 + 4 = 6 , цифр у квадрата всё так же вдвое больше количества цифр исходного.
       сумма: 2 + 4 = 6 , цифр у квадрата всё так же вдвое больше количества цифр исходного. сумма: 2 + 3 = 5 , цифр у квадрата числа: 3 = 4–1 .
       сумма: 2 + 3 = 5 , цифр у квадрата числа: 3 = 4–1 . сумма: 2 + 3 = 5 , цифр у квадрата: 3 = 4–1 .
       сумма: 2 + 3 = 5 , цифр у квадрата: 3 = 4–1 . сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.
       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше. сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.
       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше. сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .
       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 . сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .
       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 . сумма: 4 + 8 = 12 , у квадрата вдвое больше.
       сумма: 4 + 8 = 12 , у квадрата вдвое больше. сумма: 4 + 8 = 12 , у квадрата вдвое больше.
       сумма: 4 + 8 = 12 , у квадрата вдвое больше. сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 . сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 . 
                                                 
                                                 
                                                 
                                                
если непонятно, спрашивай в комментах ↓↓↓