Функция возрастает на интервале (-1; +∞)
Убывает на (-∞; -1)
Объяснение:
через производную:
f'(x)=4x³+4
приравниваем производную к нулю и ищем корни
4x³+4=0
4x³=-4
x³=-1
x=-1 - корень
отмечаем полученные корни на числовой прямой:
[-1]>ₓ
получаются 2 интервала (слева и справа от -1). Берем пробную точку, например 0 (она находится правее чем -1), подставляем в нашу производную f'(x)=4x³+4
f'(0)=4*0³+4=4
получили положительное число (то есть со знаком +), значит правый промежуток с плюсом.
Теперь берем любую точку левее -1, например -2
f'(-2)=4*(-2)³+4=4*(-8)+4=-28 - отрицательное число, значит левый промежуток с минусом, то есть
[-1]>ₓ
Там где производная отрицательна - функция убывает.
Где производная положительна - функция возрастает.
x=-1 - точка минимума (так как до нее функция убывала, а после нее начала возрастать)
S=3t²+9t
S(t)=3t²+9t
S(1)=3×1²+9×1=12
S(2)=3×2²+9×2=30
S(3,5)=3×3,5²+9×3,5=3×12,25+31,5=36,75+31,5=68,25
S(5)=3×5²+9×5=75+45=120
вроде так но я не уверена
Объяснение: