Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
ответ: Пусть х км/ч- собственная скорость катера, тогда (х + 3) км/ч - скорость по течению, а (х - 3) км/ч - скорость против течения. Значит, 5 км против течения катер за 5/(х - 3) ч, 14 км по течению катер за 14/(х + 3) ч, а 18 км по озеру - за 18/х ч. Составим и решим уравнение:
5/(х - 3) + 14/(х + 3) = 18/х;
умножим обе части уравнения на х(х - 3)(х + 3) ≠ 0 и получим:
5х(х + 3) + 14х(х - 3) = 18(х - 3)(х + 3),
5х² + 15х + 14х² - 42х = 18(х² - 9),
19х² - 27х = 18х² - 162,
х² - 27х + 162 = 0,
D = (-27)² - 4 · 1 · 162 = 729 - 648 = 81; √81 = 9.
х₁ = (27 - 9)/(2 · 1) = 18/2 = 9, х₂= (27 + 9)/(2 · 1) = 36/2 = 18.
Значит, собственная скорость катера может быть либо 9 км/ч, либо 18 км/ч.
ответ: 9 км/ч или 18 км/ч