Решение: 1) пусть х кг - вес третьего слитка, у кг - вес меди в третьем слитке. по условию в 1-ом слитке 30% меди, тогда 5·0,3 = 1,5 (кг) - чистой меди в первом слитке. по условию во 2-ом слитке тоже 30% меди, тогда 3·0,3 = 0,9 (кг) - чистой меди во втором слитке. 2) если первый слиток сплавили с третьим, то вес получившегося слитка равен (5 + х) кг, а количество в нём меди - (1,5 + у) кг. по условию содержание меди при этом получилось равным 56%. составим уравнение:3) если второй слиток сплавить с третьим, то вес получившегося слитка равен (3 + х) кг, а количество в нём меди - (0,9 + у) кг. по условию содержание меди при этом получилось равным 60%. составим уравнение:4) составим и решим систему уравнений:сложив почленно обе части уравнения, получим, что 10 кг - вес третьего слитка6,9 кг меди в третьем слитке 5) найдём процентное содержание меди в третьем слитке: % меди в третьем слитке. ответ: 69 %.
Если А и А+1 оба делятся на 8, значит младшая цифра числа А обязана быть 9, чтобы был перенос в разряд десятков при добавлении 1 (если бы переноса не было, то суммы цифр чисел А и А+1 тоже отличалась бы на 1 и, значит, обе суммы одновременно не могли бы делиться на 8). Если средняя цифра равна 1, то условие 3) будет автоматически выполнено, потому что любое целое число кратно единице. Тогда, чтобы сумма цифр делилась на 8, первую цифру можно взять 6: получается число A=619, 1) Сумма цифр А равна 6+1+9=16 - делится на 8 2) А+1=620. Его сумма цифр равна 6+2=8 - делится на 8. 3) 6+9=15 кратно 1.
u1(u2-8)=0
u1=0
u2-8=0
u2=8
ответ u1=0 u2=8