1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
Подставим из 1 уравнение у=х-1 во второе {у=х-1 {х²-2(х-1)=26 Решим 2 уравнение, для этого раскроем скобки, умножая число перед скобками на каждое число, стоящее в скобках: х²-2х+2=26 Перенесем числа влево и приведем подобные слагаемые, чтобы в правой части остался ноль. х²-2х-24=0 Решим квадратное уравнение: D=b²-4ac, где a число перед x², a=1; b число перед x, b=-2; c свободное число, в нашем случае с=-24 D=4-4*1*(-24)= 4+96=100 x1= (-b+√D)/2a= (2+10)/2=6 x2=(-b-√D)/2a= (2-10)/2=-4 Найдем y1 и y2 подставив в первое уравнение получившиеся x1 и x2: y1=x1-1=6-1=5 y2=x2-1=-4-1=-5 ответ: (6;5) ; (-4;-5)
1) (-1)⁴ + (-1)⁵=1-1=0
2) -1⁴ + (-1)⁵=-1-1=-2
3) (-1)⁵ - (-1)⁴=-1-1=-2
4) -1⁵ + (-1)⁴=-1+1=0
5) (-1)⁹ - (-1)⁵ - (-1)⁴=-1+1-1=-1