222.
Объяснение:
P = 44см
a - b = 2см
a∠b = 60°
Для начала мы можем найти стороны a и b параллелограмма. Мы знаем, что периметр это удвоенная сумма его смежных сторон, так что 2(a+b)=44. Следовательно:
a + b = 22
a - b = 2
Получили систему уравнений, которую можно решить, например, сложением.
a + a + b - b = 22 + 2
2a = 24, a = 12, b = 10
Проверяем: 12 + 10 = 22, 12 - 10 = 2.
Теперь когда мы знаем обе стороны, можем найти меньшую диагональ по формуле:
d = √(a^2 + b^2 - 2ab·cosβ) = √(144 + 100 - 44*1/2) = √(222)
Поскольку нам нужно найти ее квадрат, корень в конце можем не брать, а 222 и будет ответом.
Объяснение:
Периметр прямоугольника:
P=2(a+b) , где
a - длина, см;
b - ширина, см.
Площадь 1-го квадрата:
S₁=a², где a - сторона 1-го квадрата (она же длина прямоугольника), см.
Площадь 2-го квадрата:
S₂=b², где b - сторона 2-го квадрата (она же ширина прямоугольника).
Система уравнений:
26=2(a+b); a+b=26/2; a+b=13; b=13-a; b²=(13-a)²
85=a²+b²; b²=85-a²
(13-a)²=85-a²
169-26a+a²-85+a²=0
2a²-26a+84=0 |2
a²-13a+42=0; D=169-168=1
a₁=(13-1)/2=12/2=6; b₁=13-6=7
a₂=(13+1)/2=14/2=7; b₂=13-7=6
ответ: 6 см и 7 см.