1) x²+3x-40= 0;
2) 13х²-65х-468=0.
есть, как минимум, два сделать это быстро:
1) корни х₁= -5 и х₂= 8
По теореме Виета
х²+рх+q=0
x₁*x₂=q
x₁+x₂=-p
q=-5*8= -40;
-p= -5+8= -3; →p=3
x²+3x-40= 0.
(Можем домножить уравнение на любое число- корни не изменятся,
Например: 3(х²+3х-40)=0*3;
3х²+9х-120=0; - тоже правильный ответ)
2) Любой квадратный трёхчлен ax²+bx+c можно представить в виде множителей:
ax²+bx+c=a (x-x₁)(x-x₂), где x₁, x₂ — корни квадратного уравнения ax₂+bx+c=0.
Поэтому для корней x₁=9, x₂= -4 возьмём любое значение а. Например я хочу а=13 ( Вы можете взять другое)
13(х-9)(х-(-4))=(13х-117)(х+4)=13х²+52х-117х-468=13х²-65х-468.
13х²-65х-468=0.
(Если разделим на 13, то есть а=1 получим х²-5х-36=0 -тоже ответ).
Попробуйте сами- это интересно и ответ будет только Ваш.
Якщо число x є розв'язком як нерівності x>−4, так і нерівності х<5, тоді воно є розв'язком подвійної нерівності −4<x<5.
Множину усіх чисел, що задовільняють подвійній нерівності −4<x<5 називають числовим проміжком і позначають: (−4;5).
Зобразимо проміжок на малюнку. Точки малюємо виколотими, оскільки вони не належать проміжку.
51_t02(1).png
Розглянемо інші проміжки.
−4≤x≤5 або x∈[−4;5]. Читається: «Проміжок від −4 до 5, включаючи −4 та 5».
51_t02(4).png
−4≤x<5 або x∈[−4;5). Читається: «Проміжок від −4 до 5, включаючи −4».
51_t02(2).png
−4<x≤5 або x∈(−4;5]. Читається: «Проміжок від −4 до 5, включаючи 5».
51_t02(3).png
y=x²-6x+13
x²-6x+13=0
D=6²-4*13
D=36-52
Дискриминант меньше нуля, значит точек пересечения с OX
a>0, следовательно ветви направленны вверх
Выражение больше нуля при любых значениях X